THE MOVING GARDENS: REEF FISHES GRAZING, CLEANING, AND FOLLOWING GREEN TURTLES IN SW ATLANTIC

by

Cristina SAZIMA (1, 3), Alice GROSSMAN (2), Claudio BELLINI (2) & Ivan SAZIMA (1)

ABSTRACT. - Reef fishes may associate with marine turtles and graze on their shells, or clean their head, neck and flippers. On a reef flat at Fernando de Noronha Archipelago, SW Atlantic, we recorded green turtles (Chelonia mydas) grazed, cleaned and followed by reef fishes. The green turtle seeks specific sites on the reef and pose there for the grazers and/or cleaners. Fishes recorded associated to green turtles included omnivorous and herbivorous reef species such as the damsel-fish Abudelfaf saxatilis and the surgeon-fishes Acanthurus chirurgus and A. coeruleus. The turtle is followed by the wrasse Thalassoma noronhanum only while engaged in foraging bouts on benthic algae. Following behaviour is a previously unrecorded feeding association between turtles and fishes.

RéSUMÉ. - Des poissons de récif peuvent être associés à des tortues marines; ils brouent les algues poussant sur leurs carapaces coriaces ou nettoient leur tête, cou et pattes. Sur un platier récifal de Fernando de Noronha, Atlantique occidental, des tortues vertes (Chelonia mydas) ont été observées. La tortue verte cherche des sites spécifiques dans les récifs, où elle se repose pour que les poissons viennent brouter sur leur carapace et/ou les nettoyer. Les poissons associés à la tortue verte sont des espèces de récif omnivores, comme le poisson demoiselle Abudelfaf saxatilis, ou herbivores comme les poissons chirurgiens Acanthurus chirurgus et A. coeruleus. La tortue est suivie par le labre Thalassoma noronhanum seulement pendant qu'il se nourrit d'algues benthiques. L'association entre tortues et poissons suiveurs est observée pour la première fois dans l'Atlantique occidental.

Key words. - Acanthuridae - Pomacentridae - Labridae - Chelonia mydas - ASW - Fish foraging - Symbiosis.

Marine herbivorous fishes may graze upon algal growth on turtles' shell, getting food and thus reducing drag for the turtle (Losey et al., 1994). Three species of surgeon-fishes, Acanthurus nigriatus, Ctenochaetus striogus and Zebrasoma flavescens are reported to graze on the green turtle, Chelonia mydas, in Hawaii (Losey et al., 1994). They graze largely on the shell, but occasionally may feed on skin areas, and in both instances the surgeon-fishes scrape the algae in their typical feeding pattern of tightly clustered bites (Losey et al., 1994). Herbivorous fishes that graze on turtles' shells and other body areas may consume molting skin from the head and neck, and apparently may remove ectoparasites as well, thus occasionally acting as cleaners (Losey et al., 1994).

Cleaning symbiosis is another kind of feeding association recorded between fishes and turtles (Booth and Peters, 1972; Losey et al., 1994). In this association the cleaners feed on ectoparasites, diseased or injured tissues, and mucus from the body surface of their "clients" (generally other fishes), which in their turn get rid of unwanted material (review in Losey, 1987). Several cleaner species hold clean stations, specific sites on the reef visited by clients seeking for cleaning services (Losey, 1978). Cleaning symbiosis in coral reefs involves fishes and shrimp as cleaners, and fishes as well as reptiles as clients (Feder, 1966; Hobson, 1969; Booth and Peters, 1972). Cleaning association with the turtle Chelonia mydas is reported for four reef fish species, the damselfish Abudelfaf saxatilis and the wrasse Thalassoma inohare in Australia (Booth and Peters, 1972), as well as the wrasse Thalassoma dipepper and the puffer Canthigaster jactator in Hawaii (Losey et al., 1994). For marine turtles other than C. mydas, cleaning association is reported for the hawksbill Eremochelys imbricata and the angelfish Pomacanthus paru in the Caribbean (Smith, 1988). Following behaviour is an unrecorded feeding association between fishes and turtles, although a common habit among several reef fishes (e.g., Hobson, 1968; Diamant and Shpigel, 1985; Strand, 1988). Such feeding association implies in a "nuclear" species which disturbs the substrate during its foraging and thus displaces or uncovers hidden prey, and "follower" species which capitalize on this other

(1) Departamento de Zoologia e Museu de História Natural, Caixa Postal 6109, Universidade Estadual de Campinas, 13083-970 Campinas, S5º Paul, BRAZIL. [esazima@unicamp.br]

(2) Projeto Tamar-Ibama, Alameda Boldr6 s/no, 53990-000 Fernando de Noronha, Pernambuco, BRAZIL.

(3) Departamento de Zoologia, Caixa Postal 199, Universidade Estadual Paulista, 13506-900 Rio Claro, S5º Paul, BRAZIL.

Reef fishes grazing, cleaning, and following green turtles in SW Atlantic

Several reef fish species have been recorded associated with octopuses, moray eels, rays, and other substrate-disturbing fishes (Karplus, 1978; Ormond, 1980; Diamant and Shpigel, 1985; Strand, 1988). Herein we report on reef fishes grazing on, and cleaning, the green turtle (Chelonia mydas) on a reef flat at Fernando de Noronha Archipelago, SW Atlantic. Additionally, we record a wrasse species following the turtle while the latter is engaged in foraging bouts on benthic algae. Besides general observations on the cleaning association between green turtles and their cleaners and followers, our study addressed the following questions: Does the grazing/cleaning association take place at any site of the reef flat or do the green turtles seek the cleaners at their stations? During inspecting and/or cleaning the turtle, do the cleaners concentrate on any specific body part? How do green turtles behave while being grazed/cleaned? What a planktivorous and cleaning wrasse (Francini-Filho et al., 2000) seeks while following a turtle?

MATERIAL AND METHODS

Our field observations were conducted at a reef flat of the Bafa do Sueste, Fernando de Noronha National Marine Park, Fernando de Noronha Archipelago (03°50'S 32°15'W), off NE Brazil (see Maida and Ferreira, 1997; Carleto and Olson 1999 for maps and description). The interactions between turtles and fishes were first documented in February 1999 and then sporadically recorded from October 2001 to October 2002.

The study site is within an inlet and is composed by an inner, protected reef flat and shallow area near shore and an outer reef slope leading to deeper parts of the Bafa do Sueste (Fig. 1). The flat and the slope are built by sandy bottom and irregular rocky patches sparsely to thickly covered by brown foliose algae, red coralline algae, and stony corals (Maida et al., 1995; Sanches and Bellini, 1999).

The behavioural events involving reef fishes and green turtles were recorded over 56 days while snorkelling. During the observational sessions of 1-12 min we used 'local animal' sampling, in which all occurrences of specified actions were recorded (Altmann, 1974). Besides records pencilled on plastic slates, behavioural events were photographed and video-recorded, the tape being on file at the Museu de História Natural, Universidade Estadual de Campinas (ZUEC tape #14) and at the Tamar/Ibama quarters in the National Marine Park of Fernando de Noronha Archipelago.

The analysed video-recorded sequence, with the turtle posing and the fishes inspecting and feeding, lasted for about 11 min. We considered fishes facing the turtle and positioned less than 15 cm away from its body as inspecting it, and scored a feeding nip only when it was unmistakably recognized as such. For precision sake we used only the video-taped sequence in which feeding nips could be unmistakably counted (about 4 min). Hence, our inspection/feec counts presumably underestimate the number of feeding nips, especially those on the turtle's shell due to its disruptive pattern and the thus sometimes blurred effect.

Due to the protected status of the study site we refrained from sampling, grazer/cleaner individuals for gut contents, as this would imply spear-fishing and use of this gear would raise strong opposition from both the islanders and the tourists. However, we scraped off material from the shell and soft parts of the turtles (N = 2) to gain insight into what may be available as food to the grazers and cleaners. The material sampled from the turtles, collected exclusively from cleaned individuals, was examined and identified under a stereomicroscope and a microscope. Additionally, we inspected three turtles visually for the presence of larger attached
RESULTS

We recorded green turtles foraging on benthic algal banks at high tide in a relatively large area of the reef flat of the Baía do Sueste (Fig. 1) at sites 1-2 m deep. Fishes following the foraging turtles were recorded at these feeding grounds only. On the other hand, grazing/cleaning associations were restricted to the deeper (2.5-4.5 m) parts of the slope (Fig. 1), where we recorded two cleaning stations at the high tide.

Figure 1. - Green turtle's feeding (F) and cleaning (C) grounds at the Baía do Sueste, Fernando de Noronha Archipelago, SW Atlantic. Scale bar = 50 m.

Cybium 2004, 28(1)
Table 1. - Reef fish species, inspection and feeding nips at body parts of the green turtle (*Chelonia mydas*), as scored from 4 min video-recording at the *Baia do Sueste*, Fernando de Noronha Archipelago, SW Atlantic.

<table>
<thead>
<tr>
<th>Fish species</th>
<th>Inspections/feeding nips</th>
<th>Shell</th>
<th>Head/neck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pomacentridae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abudedefduf saxatilis</td>
<td></td>
<td>3/0</td>
<td>16/3</td>
</tr>
<tr>
<td></td>
<td>(n = 1)</td>
<td>(n = 1-2)</td>
<td>(n = 1-2)</td>
</tr>
<tr>
<td>Acanthuridae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthurus</td>
<td></td>
<td>16/6</td>
<td>35/14</td>
</tr>
<tr>
<td></td>
<td>(n = 1-8)</td>
<td>(n = 1-6)</td>
<td>(n = 1-3)</td>
</tr>
<tr>
<td>Acanthurus</td>
<td></td>
<td>2/0</td>
<td>8/2</td>
</tr>
<tr>
<td></td>
<td>(n = 1)</td>
<td>(n = 1-2)</td>
<td>(n = 1)</td>
</tr>
</tbody>
</table>

The two cleaning stations were held by the ubiquitous damselfish *Abudedefduf saxatilis* and the surgeonfishes *Acanthurus chirurgus* and *A. coeruleus*. The cleaning stations were located at calcareous concretions and rocky outcrops where the cleaners (12-25 individuals about 7-12 cm TL) concentrated and hovered about 0.5-4.5 m above the station and/or the bottom.

The three above-mentioned reef fish species were recorded inspecting the green turtle's shell, but only the doctorfish (*A. chirurgus*) was actually feeding on this body part (Tab. 1). The grazing behaviour by surgeonfishes on turtles was recorded only at the cleaning stations, simultaneously to inspection and cleaning of its soft parts by other individuals of the same or other species (Tab. 1). The grazing by surgeonfishes on the green turtle's shell followed their usual bite pattern while grazing on bottom algae at the study site (pers. obs.).

Cleaning/grazing on the green turtles' soft parts was recorded for the damselfish and both the two surgeonfish species (Tab. 1). This was preceded by a characteristic inspection usually followed by feeding nips on the turtles' skin surface. Some of the bites were forcible and clearly directed to particular, visible items on the turtle's skin. On occasions the turtle moved its forelimbs to chase away fishes that were feeding in this way. The most inspected and

Figure 2. - A green turtle foraging on benthic algae, followed by four individuals of the wrasse *Thalassoma noronhanum* (close to left side of carapace) on a reef flat at Fernando de Noronha Archipelago, SW Atlantic. Curved carapace length about 54 cm. From a videorecord frame by A. Grossman.

Cybium 2004, 28(1)
Reeffishes grazing, cleaning, and following green turtles in SWAtlantic

cleaned body parts were the flippers (Tab. 1). Neck and head areas were also inspected and cleaned, whereas the anal region went untouched by the fishes.

Tufts of small filamentous algae dominated the samples scrapped off the turtles. The brown Ectocarpus cf. brevarticulatus (Ectocarpaceae) and the red Herposiphonia secunda (Rhodomelaceae) were present in similar amount in the soft parts (neck, limbs) samples. Other algae were rare on these samples, including the green Cladophora sp. (Cladophoraceae) and the red Janic cf. adhaerens (Corallinaceae). The brown E. cf. brevarticulatus dominated the shell samples as well, whereas H. secunda was scarce there. In the shell samples we also found a plantule of the brown Dictyota sp. (Dictyotaceae). We found no parasites or other epizoic animals in our samples. On the visually inspected turtles, besides the aforementioned algae, we found very few turtle barnacles on the shell (see Bugoni et al., 2001 for brazilian commensal barnacles of sea turtles).

At the cleaning stations the turtles displayed characteristic soliciting postures (cf. Losey et al., 1994). While being grazed and/or cleaned a turtle remained almost motionless with its flippers extended and drooped downward, in a posture more exaggerated than that illustrated by Booth and Peters (1972). Its neck was extended and bent downward throughout most of the cleaning session. While engaged in a cleaning association, the turtle hovered above or by the cleaning station, about 0.5–1.5 m away from the bottom.

We recorded no inspecting by cleaner fishes or cleaning associations while the green turtle was foraging, and recorded no feeding activities by the turtle while it was attended at the cleaning stations. The turtle seemed rather to concentrate on the cleaning, and held its position close to the station using discrete limb movements. We recorded the turtle raising to the surface for breathing, and thereafter actively seeking the same site where it was being cleaned before the surfacing.

At the green turtles' feeding areas (Fig. 1) we recorded another kind of association with reef fishes. While on a foraging bout the turtle selected and picked up benthic algae on the reef flat and was occasionally followed by the wrasse Thalassoma noronhanum. One to four fish (6–8 cm TL) were recorded closely following the turtle, and feeding on drifting particles turned loose from the bottom by the turtle's feeding activity. The fish approached the turtle's forebody mostly when the latter picked up the algae stirring the substrate a little (Fig. 2).

DISCUSSION

Several reef fish species that act as cleaners occupy cleaning stations or areas, either permanent or temporary, mostly located on conspicuous portions of the reefs (Feder, 1966; Losey, 1987; Sazima et al., 1999). The cleaning stations at the Baia do Suêste follow the general pattern found for other reef species that act as cleaners in mid-water aggregation e.g., the labrid Thalassoma noronhanum and the chaetodontid Chaetodon striatus (Francini-Filho et al., 2000; Sazima and Sazima, 2001). The stations held by the damselfish and surgeonfishes were conspicuous within the relatively bare reef flat environment, which rendered the hovering cleaners easy to find by humans (and presumably by the turtles as well).

Surgeonfishes are regarded as an almost entirely herbivorous group and dependent on algae as their primary food (Randall 1967; Bdhlke and Chaplin, 1968; Earle, 1972). The algal-eating acanthurids are able to exploit diverse micro-habitats during their foraging (e.g., Earle, 1972; Hobson, 1974; Losey et al., 1994), and the three species of Acanthurus recorded on the Brazil's coast feeds on algae growing on sand surface, attached to rocks,
Brown and red algae dominated the samples scraped off the turtles. These two major taxa of marine macro-algae present lower value than green algae as food for fishes, based on their nutrient and energy contents (Montgomery and Gerking, 1980). However, brown and red algae compose the bulk of food in stomach contents of the western Atlantic Acanthurus species (Randall, 1967; Duarte and Acero, 1988; Dias et al., 2001), and we submit that these algae are consumed by those individuals grazing on the turtle. Based on their inspection prior to the nips we suppose the grazers visually select the algae they will pick on the turtle's body. Visual selection seems habitual for some algae grazers, including the green turtle (Montgomery and Gerking, 1980; Sazima and Sazima, 1983; Dias et al., 2001).

So far the Atlantic damselfish Abudefduf saxatilis is
recorded as an occasional cleaner of reef fishes only (Colin, 1975; Sazima, 1986; Carvalho-Filho 1999). In this study, however, it was recorded cleaning green turtles, picking at algae, molting skin, and perhaps small ectoparasites as well. Similarly, the Pacific A. trosechilus besides cleaning reef fishes (Hobson 1968; McCouri and Thomson 1984), picks off molting skin of submersed marine iguanas, Amblyrynchus cristatus (Hobson, 1969). The also Pacific A. sexfasciatus occasionally plucks algal growth from green turtles positioned in mid-water (Booth and Peters, 1972). Species of Abudefduf are omnivorous benthic-feeders which may also forage for plankton in the water column (Hobson, 1968; Randall, 1967; Fishelson, 1970; Carvalho-Filho 1999; Sazima and Sazima 2001). Nevertheless, Hobson (1971) suggests that substrate-picking predators which also feed on drifting plankton have traits well-suited to perform cleaning. Thus, we predict that cleaning by species of Abudefduf on turtles will eventually be found in other areas.

Marine turtles bear ectoparasite such as coronulids and platylepadiid barnacles (Bugoni et al., 2001), as well as occasional leeches, whereas reef fishes are infested mostly by copepods and isopods (Grutter, 1994, 1999). We suggest that turtle cleaners do not specialise in this kind of symbiosis, as the habitual and more specialized cleaner species feed mostly if not exclusively on ectoparasites crustaceans of fishes (Feder, 1966; Losey, 1971; Hobson, 1971; Grutter, 1999). Only particular individuals of the wrasse Thalassoma duperrey, an opportunistic and versatile forager, are reported to specialise on parasitic turtle barnacles in Hawaii (Losey et al., 1994). Thus, we suggest that in most instances marine turtles are cleaned by reef fishes which are opportunistic feeders, and/or by those which have a broad diet (even if only occasionally, such as the acanthurids). Indeed, records on reef fishes cleaning reptiles are restricted to substrate-pickers, omnivores, and non-obligate cleaner species (Hobson 1969; Booth and Peters, 1972; Smith, 1988; Losey et al., 1994; Moll, 1995).

The behaviour of Chelonia mydas we recorded at the cleaning stations is undoubtedly an instance of grazing and cleaning symbiosis between reef fishes and marine reptiles (Losey, 1971; Losey et al., 1994). The turtle did not simply pass by or loitered at the cleaning stations, but concentrated on cleaning activities. Additionally, no foraging was ever recorded at the cleaning stations. As the green turtle feeding grounds at the Baía do Sueste do not overlap with the cleaning area, we surmise that the turtles seek for specific sites on the reef to be grazed and/or cleaned. This assumption is strengthened by our observation on a turtle raising to the surface to breathe during a cleaning interaction, and thereafter returning to the same site to resume the cleaning session. Moreover, at cleaning stations the turtles displayed typical soliciting postures, such as hovering in a motionless posture and relaxing the flippers/neck to an

Cybium 2004, 28(1)

Reef fishes grazing, cleaning, and following green turtles in SW Atlantic

extended downward position (see Booth and Peters, 1972; Smith, 1988; Losey et al., 1994 for illustration and description). Additionally, the turtles' forelimb movements to repel an occasional "hasty" cleaner probably are an aversive response to a plausibly painful stimulus due to the removal of a parasite embedded in the skin and/or a sensitive (wounded?) skin portion. These aversive responses are reminiscent of the jerking or shuddering movements performed by fish and turtle clients after an aching bite from their cleaners (Losey, 1971; Losey et al., 1994; Sazima et al., 1999).

Several species of follower fishes are recorded associated with animals as diverse as octopuses, moray eels, rays and other fishes disturbing the substrate during their feeding activity (Karplus 1978; Ormond 1980; Diamant and Shpigel, 1985; Strand, 1988). Fish followers are previously unrecorded associated with marine turtles, even though these reptiles are common in the reef environment, particularly during their foraging (e.g., Sazima and Sazima, 1983; Sanches and Bellini, 1999). Chelonia mydas grazes primarily on benthic algae and ingests apical portions of larger algae, whereas the smaller ones may be torn away entirely (Sazima and Sazima,
Thus, the feeding behaviour of the green turtle disturbs the substrate, raising drifting particles and uncovering small crustaceans associated to the algae and has the potential to attract fishes which feed on these food types, as is the case of the wrasse *Thalassoma noronhanum* recorded herein. The Noronha wrasse is reported as a benthic invertebrates-picker, plankton-eater, and a cleaner holding mid-water cleaning stations (FranciniFilho et al., 2000; Rocha et al., 2001). However, we noticed that this wrasse is a very versatile forager, that besides picking off plankters and small benthic organisms, acts as follower and part-time cleaner of parrotfishes, grunts and other substrate-disturbing fishes, and often feeds on their faeces (coprophagy see Sazima et al., 2003). It likely perceives diverse foraging situations and use several kinds of food supplies, acting as a sort of “jack-of-all-trades” forager (see Losey et al., 1994 for comments on *T. duperrey*). Being a cleaner, *T. noronhanum* may perhaps clean the green turtle along with its following behaviour, making shifts between these two roles, a suggestion that remains to be verified. At our study site we recorded such shifts in cleaning and following roles for this wrasse when associated with larger fishes like species of the parrotfish *Sparisoma* and the grunt *Haemulon parra*.

Grazing and substrate-disturbing marine vertebrates other than turtles most probably attract fish followers as well. While foraging on algae, marine iguanas (*Amblyrhynchus cristatus*) are likely candidates to play a nuclear role for opportunistic micro-carnivores as well as planktivores and foragers on particulate matter such as labrids (Hobson 1991). Marine grazing mammals such as
Reef fishes grazing, cleaning, and following green turtles in SW Atlantic
dugongs (*Dugong dugong*) and manatees (*Trichechus manatus*) would play
a similar nuclear role for fish followers over the sea grass flats and algae
beds they forage on.

Taken together, data from the literature and our observations indicate that
feeding associations between reef fishes and marine turtles (and other
marine vertebrates as well) may be widespread, albeit little studied. Even if
widespread the possibility remains that these are events very localised in
space and/or time, or that this is an uncommon behaviour restricted to a
few communities and/or populations of reef fishes, which would explain the
scarcity of reports about this kind of marine symbiosis (see these views in Losey et al., 1994; Sazima et al., 2003).

Acknowledgements. - We thank the Projeto Tamar and the Centro
Golfinho Rotador (through L.M. Silva Jr.) for logistical support at Fernando de Noronha Archipelago; J.P. Krajewski and R.M. Bonaldo for help with field
work; M. Sazima for help with algae identification; A.S. Abe and J. Zuanon for
suggestions on the manuscript; the Ibama for permission to study reef fishes at
the Marine National Park of Fernando de Noronha; the CNPq, FAUParicamp, FAESP and Funda95e Pr6-Tamar for essential financial
support (Projeto TAMAR is affiliated with IBAMA comanage by the
FundagAo Pr6-TAMAR, and officially sponsored by Petrobras).

REFERENCES

Behaviour, 49: 227-265.

BOHLEKE YE. & C.C.G. CHAPLIN 1968. - Fishes of the Bahamas and

BOOTH J. & LA. PETERS, 1972. - Behavioural studies on the green turtle

CARLETON M.D. & S.L. OLSON. 1999. - Amerigo Vespucci and the rat of
Fernando de Noronha: a new genus and species of Rodentii; (Muridae:
Sigmodontinae) from a volcanic island off Brazil's continental shelf. Am. Mus.

Paulo: Melro.

Publications.

DIAS T.L.P., ROSA I.L. & B.M. FEITOZA 2001. - Food resource and
habitat sharing by the three Western South Atlantic surgeonfishes (Teleostei:
Acanthuridae: Acanthurus) off Paraiba coast, North-Eastern Brazil. *Aqua. J.

DIAMANT A. & M. SHPIGEL, 1985. - Interspecific feeding association of
grouper (Teleostei: Serranidae) with octopuses and moray eels in the Gulf of

del g-neco Acanthurus (Perciformes: Acanthuridae en la región de Santa

Sazima, GROSMAN, BELLINI & Sazima
EARLE S.A., 1972. - The influence of herbivores on the marine plants of
Angeles County,* 14: 17-44.

FEDER H.M., 1966. - Cleaning symbiosis in the marine environment. *In:

FISHELSON L., 1970. - Behaviour and ecology of a population of *Abudefduf
saxatilis* (Pomacentridae: Teleostei) at Eilat (Red Sea). *Anim. Behav.,* 189:
225-237.
Cleaning by the wrasse *Thalassoma noronhanum*, with two records of predation by its grouper client *Cephalopholis fulva*. *J. Fish Biol.*, 56: 802-809.

Cybium 2004, 28(1)
Reefishes grazing, cleaning, and following green turtles in SW Atlantic

Cybium 2004, 28(1)

