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Abstract
The loggerhead sea turtle (Caretta caretta) is a cosmopolitan sea turtle species and is listed by IUCN as Vulnerable globally. 
The Southwest Atlantic is an important regional management unit of C. caretta worldwide due to the distinctive mitochondrial 
DNA (mtDNA) lineage promoted by recent radiation within the Atlantic-Mediterranean region. However, due to the low 
resolution of mtDNA, the population structure of C. caretta SWA has not been well understood in the previous studies using 
only mtDNA. Our study encloses data from literature and a long-term genetic survey (1999 to 2021) distributed through four 
great nesting areas for the Southwest Atlantic to assess the genetic diversity and the population structure of the C. caretta, 
using both mtDNA and 15 microsatellite loci. The results demonstrate that the genetic diversity indexes of the Southwest 
Atlantic C. caretta reflect distinct compositions at a population level due to variation at an individual level. The SSRs results 
identified well-established and significant spatial population structure between nesting areas. Unique genetic patterns were 
identified for those females from studied areas of the Southwest Atlantic, and it may be related to their philopatric behavior 
and high relatedness. Thus, this study deeply evaluated the molecular ecology of Southwest Atlantic C. caretta and provides, 
for the first time, a fine-scale and long-term resolution of the genetic diversity and population structure due to the use of 
microsatellite data that must be considered for further studies.

Keywords Genetic monitoring · Conservation genetics · Population structure · Mitochondrial DNA · Loggerhead Sea 
turtles

Introduction

The loggerhead sea turtle Caretta caretta (Linnaeus, 1758) 
is listed as Vulnerable globally by International Union for 
Conservation of Nature (IUCN) (Casale and Tucker 2017) 
and Brazil (Brasil 2022). The C. caretta is a cosmopolitan 
species (Marcovaldi and Marcovaldi 1999) that is widely 
studied (Uller and Olsson 2008, Clusa et al. 2016; Lock-
ley et  al. 2020), and presents around the world several 
conservation programs that also benefit other species in 
their natural habitats, defining them as an umbrella taxon 
(Rees et al. 2016). For example, since the 1980s, the Pro-
jeto Tamar—a Sea Turtle Conservation Program—monitors 
and protects Brazilian nesting and foraging areas of sea tur-
tles against predation, coastal development, degradation of 
sandbank areas, and bycatch (Marcovaldi and Marcovaldi 
1999; Marcovaldi et al. 2006; Marcovaldi and Chaloupka 
2007; Santos et al. 2011; Pike 2013; López-Mendilaharsu 
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et al. 2020). However, some aspects of its life history (e.g., 
migratory behavior, male genetic contribution, the origin 
of juveniles from neritic feeding areas) are unknown and/
or poorly understood due to the difficulty of tracking sea 
turtles in marine habitats (Bjorndal and Bolten 2008; Luschi 
and Casale 2014; Stewart et al. 2019) or estimating the con-
nectivity between populations (e.g., using a mark–recapture 
method and/or satellite telemetry) (McClellan and Read 
2007; Soares et al. 2021). Understanding those mechanisms 
for C. caretta populations is crucial, especially because it 
exhibits inter-population dynamics and variations (like natal 
homing, philopatric behavior, and use of distinct feeding and 
developmental areas) that warrant population-specific man-
agement and conservation measures (Carreras et al. 2007; 
Monzón-Argüello et al. 2010; Wallace et al. 2010; Baltazar-
Soares et al. 2020). 

Molecular studies using the control region (D-loop) of 
the mitochondrial genome (mtDNA; matrilineal inherit-
ance) around the world have been performed to improve the 
knowledge of the loggerhead life history, identifying line-
ages for females, evaluating their phylogeography and popu-
lation structure, and the origin of feeding mixed-stocks (e.g., 
Bjorndal and Bolten 2008; Reis et al. 2010; Shamblin et al. 
2014; Reid et al. 2019; Baltazar-Soares et al. 2020; Vilaça 
et al. 2021). Two great mtDNA lineages of loggerhead have 
been recognized (Bowen et al. 1994) which diverged 2–4 
million years ago (Duchene et al. 2012), and are distributed 
in the Atlantic-Mediterranean region and the Indo-Pacific 
region (Matsuzawa et al. 2016). Additionally, Wallace et al. 
(2010) established, based on mtDNA, that the Atlantic-
Mediterranean lineage is composed of four Regional Man-
agement Units (RMU) being two on the North Atlantic 
(Northeast of the USA coast and one on the Northwest of 
the north coast of Africa), one on the Mediterranean-Greece 
coast, and another on the Southwest Atlantic coast (SWA). 
On the other hand, only a few studies are using nuclear DNA 
loci (nDNA; biparental inheritance) like microsatellite loci 
(SSRs: Simple Sequences Repeats) which have provided 
greater sensitivity and fine-scale at the population level than 
D-loop (e.g., Moore and Ball 2002; Shamblin et al. 2007, 
2011; Monzón-Argüello et al. 2010; Carreras et al. 2018).

The SWA encloses important nesting areas for sea turtles, 
including the coast of Sergipe (SE), Bahia (BA), Espírito 
Santo (ES), and Rio de Janeiro (RJ) states (Marcovaldi 
and Chaloupka 2007; Lima et al. 2012; Marcovaldi et al. 
2017; Colman et al. 2020). In the previous genetic studies 
using only D-loop, there were divergent results concern-
ing the number of management units (MUs) for SWA C. 
caretta. When using short haplotypes (~ 380 bp), it was 
suggested the existence of two MUs, being the Southern 
stock (RJ + ES) and Northern stock (BA + SE) (Reis et al. 
2010), but when using long haplotypes (~ 800 bp) was sug-
gested three distinct MUs, being the Northeastern coast 

(SE + BA), the ES, and the RJ (Southeastern coast) (Sham-
blin et al. 2014). Knowing the number of loggerheads MUs 
is important, because understanding population boundaries 
and connectivity by direct observations to properly manage 
isolated rookeries is very difficult (Komoroske et al. 2017). 
Therefore, these findings reinforce the great importance 
of improving our understanding of population genetics of 
the SWA C. caretta by incorporating biparental inheritance 
molecular markers to advance conservation and management 
programs worldwide (e.g., Pike 2013; Lopez et al. 2015; 
Rees et al. 2016; Monteiro et al. 2019).

Therefore, in this study, we investigated the population 
structure and possible genetic composition changes along 
space in the SWA loggerheads from four nesting areas/rook-
eries (RJ, ES, BA, and SE) using the D-loop of the mtDNA 
and, for the first time, from 15 microsatellite loci of the 
nDNA. Thus, we elucidate the uncertainties that remained 
using increased sampling and nuclear DNA. To reach that, 
we compared our population structure results (mtDNA and 
SSRs) with those from previous studies (Reis et al. 2010; 
Shamblin et al. 2014), which indicated that each nesting 
area may be considered genetically independent MU). The 
genetic diversity results revealed complex dynamics and 
significant spatial population structure (based on nDNA) 
for SWA loggerheads that may be related to its philopatric 
behavior, which improves our understanding of the spatial 
distribution of the SWA loggerheads populations. This dem-
onstrates the importance of using molecular markers with 
biparental inheritance (such as SSRs) to detect more accu-
rate and refined data that may underpin management units 
(MUs) boundaries and conservation measures.

Materials and methods

Ethical and research permits

This study was conducted under the authorization, strict 
control, and permission of the Instituto Chico Mendes de 
Conservação da Biodiversidade and conducted under SIS-
BIO license numbers #65,543–3 and #42,760. Sampling 
of C. caretta individuals was performed minimizing ani-
mal suffering when obtaining a tissue sample for genetic 
analyses. For this study, we also obtained permission from 
the Sistema Nacional de Gestão do Patrimônio Genético e 
do Conhecimento Tradicional Associado (SisGen) on the 
number #A32C980.

Study area and sampling

Our study encloses a long-term genetic survey (1999 to 
2021) distributed through four main nesting areas (RJ, ES, 
BA, and SE) of the SWA, spanning approximately 1400 km 



Marine Biology          (2023) 170:78  

1 3

Page 3 of 12    78 

of coastline, which ES and SE are separated by 960 km, 
ES and BA by 800 km, BA and SE by 160 km, BA and 
RJ by 1120 km, RJ and SE by 1280 km, and ES and RJ by 
320 km (Fig. 1A). The sampling of loggerhead individuals 
usually occurred during the nesting season (from September 
to March) with opportunistic encounters during night sur-
veys along nesting beaches. For all individuals, we collected 
a piece of 6 mm of epithelial tissue with a biopsy punch 
from the base of the neck and the beginning of the shoul-
der. Each sample was preserved in ethanol 100% in micro-
tubes of 1.5 mL. In ES, sampling occurred along the Pov-
oação, Guriri, and Comboios beaches between the 2017/18, 
2018/19, 2019/20, and 2020/21 nesting seasons. This ES 
area is located around the mouth of the Doce River and the 
adjacent continental shelf which is one of the main nesting 
areas of adult female loggerhead turtles in the SWA (Mar-
covaldi et al. 2016). In BA, sampling occurred in Camaçari 
and Mata de São João during 2005/06, 2006/07, and 2008/09 
nesting seasons, and in Arembepe beach during the 2019/20 
nesting season. In SE, sampling occurred on Estância and 
Pirambu beaches during the 2008/09, 2009/10, and 2010/11 
nesting seasons. Additionally, tissue samples from ES, BA, 
and SE collected between 2004 and 2009 nesting seasons 
were also provided by the Projeto Tamar. At last, for com-
parison levels, we compiled genetic information from the 

long D-loop haplotypes of previous studies (Shamblin et al. 
2014). The samples were deposited in a scientific tissue col-
lection at the Federal University of Espírito Santo in Brazil.

Laboratory procedures

To access the genetic diversity of the loggerheads sampled, 
we amplified through Polymerase Chain Reactions (PCRs) 
the control region D-loop of the mtDNA genome in both 
strands using the LCM15382 and H950 primers (Abreu-
Grobois et al. 2006), and from nDNA through genotyping 
of 15 microsatellite loci (Shamblin et al. 2007, 2009). In the 
Núcleo de Genética aplicada à Conservação da Biodiversi-
dade of the Federal University of Espírito Santo in Brazil 
(NGACB-UFES: https:// blog. ufes. br/ ngacb/), the genomic 
DNA (gDNA) of each sample was isolated using a saline 
protocol of Bruford et al. (1992) and CTAB 2% of Doyle 
and Doyle (1987). The gDNA was resuspended in ultrapure 
water and, then, quantified through spectrophotometer 
NanoDrop ND100 (Thermo Scientific) to verify the DNA 
concentration (ideal 50 ng/µL) and purity of each sample. 
Subsequently, the quality of the gDNA was analyzed using 
electrophoresis in an agarose gel of 1% in UV-transillumi-
nator L-PIX Touch 20 × 20 cm  (Loccus©).

Fig. 1  Southwest Atlantic nesting areas [RJ, ES, BA, and SE] of 
Caretta caretta evaluated in this study demonstrating the (A) D-loop 
haplotype frequencies distribution, and their (B) network relation-

ships built using NETWORK, based on compiled SWA dataset, 
which colors correspond to the nesting areas and the pie charts size to 
the frequency as indicated in the legend (see Table 1 for details)

https://blog.ufes.br/ngacb/
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The amplification of the D-loop region was carried 
out following the instructions of Shamblin et al. (2012), 
which PCR cycling profile conditions were as follows: 
initial denaturation at 94 °C for 3 min, followed by 35 
cycles of denaturation step of 94 °C for 30 s, annealing at 
51 °C for 30 s, and extension at 72 °C for 40 s, followed 
by a final extension at 72 °C for 10 min. To check if there 
was any contamination, we added negative (containing 
only PCR’s mix) and positive controls (samples with a 
positive result that has been amplified before) for each 
reaction. The genotyping of the 15 microsatellite loci: 
Cc7G11, Cc1F01, Cc1G02, Cc1G03, CcP7D04, CcP2F11, 
CcP7C06, CcP8D06, CcP1F09, CcP5C11, CcP1F01, 
CcP1G03, CcP1B03, CcP5C08, and CcP5H07 (Shamb-
lin et al. 2007, 2009) following the PCR cycling profile 
conditions of Shamblin et al. (2009), which were directly 
labeled with fluorescent FAM, PET, NED, and VIC dyes 
(Shamblin et al. 2011).

Subsequently, all the PCRs products for both target 
regions (mtDNA and SSRs) were checked through elec-
trophoresis in agarose gel 1%, stained with Gel-Red (Bio-
tium), 100 bp ladder (Ludwig  Biotech©), and detected by 
UV-transilluminator L-PIX Touch 20 × 20 cm  (Loccus©). 
Then, PCR products were purified ExoSAP-IT (Applied 
Biosystems) to remove surplus reagents, following 
the manufacturer’s protocol. PCR products were also 
sequenced in both directions using Big Dye Termina-
tor components (Applied Biosystems) according to the 
manufacturer’s protocols. The genotyping was performed 
using a reagent mix with 7.0 µL of formamide, 0.5 µL 
of fluorescent standard molecular size GeneScan™ 600 
LIZ™ Size Standard v2.0 (Applied  Biosystems©), and 
0.5 µL of the purified PCR’s product. For both sequenc-
ing and genotyping, we used the sequencer ABI Pris 3700 
Automatic Sequencer (Thermo Fisher Scientific) (Applied 
Biosystems).

Both strands of the D-loop sequences were edited and a 
consensus for each individual was generated using Geneious 
R11.1.5 (Biomatters Ltd; Kearse et  al. 2012). Next, an 
alignment was also carried out under default conditions 
using ClustalW (Thompson et al. 1996) implemented in 
Geneious. Further, SSRs alleles were scored and tabulated 
using Geneious. The identification of null allele, large allele 
dropout, PCR slippage, and genotyping errors was evaluated 
by MICRO-CHECKER v2.2.3 (van Oosterhout et al. 2004) 
with a 95% confidence interval by Monte Carlo simulation. 
Additionally, deviations from Hardy–Weinberg equilib-
rium (HWE) and the linkage disequilibrium (LD) between 
each pair of loci were evaluated through the significance 
test using the Markov Chain method (10,000 dememoriza-
tions, 20 batches, and 5000 iterations per batch) using the 
software ML-Relate (Kalinowski et al. 2006) and FreeNA 
(Kawashima et al. 2009), respectively.

mtDNA analyses

To evaluate if there are possible genetic composition changes 
along space the SWA loggerheads and their genetic diversity, 
we first identified the D-loop haplotypes from our dataset 
compared with existing haplotypes from nesting and forag-
ing locations worldwide and, which new long haplotypes 
were identified through the Archie Carr Center for Sea Tur-
tle Research database (ACCSTR) (available at: http:// accstr. 
ufl. edu/ ccmtd na. html). Second, we estimated the genetic 
diversity by the number of haplotypes (H), the haplotype (h; 
Nei 1973), and nucleotide (π; Nei and Li 1979) diversities 
through DnaSP v5 (Librado and Rozas 2009) (Table 1), and 
we compared among them. Third, we compiled our dataset 
with those available in Shamblin et al. (2014) naming them 
as “compiled SWA” (Table 1) to maximize the space scale 
of sampling and make more feasible comparisons for the 
optimal rookery clustering for the SWA RMU. Fourth, we 
inferred the haplotype genetic relationships and their geo-
graphic frequency distribution by building a haplotype net-
work using Median-Joining (Saitou and Nei 1987) that was 
displayed by nesting areas using the NETWORK method 
presented in Bandelt et al. (1999).

Fifth, using our D-loop dataset plus RJ data (from Sham-
blin et al. 2014), we evaluated the population structure by 
pairwise FST (Nei 1977) comparing the nesting areas of 
the SWA. Complementary, we then performed additional 
comparisons by Analysis of Molecular Variance Analysis 
(AMOVA; Excoffier et al. 1992), and pairwise and global 
FST using the compiled SWA dataset (Table 1). We tested 
the following hypotheses to identify the optimal rookery 
clustering for SWA: (1) the Northern stock (SE + BA) is 
genetically distinct from the Southern stock (ES + RJ) as 
suggested by Reis et al. (2010); (2) the Northeastern coast 
(SE + BA) is genetically distinct from the ES and also from 
RJ coast as suggested by Shamblin et al. (2014); (3) the 
area SE + BA + ES is genetically distinct from the RJ nest-
ing area; and (4) each nesting area being a genetic resource 
population. We performed all population structure analy-
ses using a D-loop in Arlequin 3.0 (Excoffier et al. 2005), 
and a significance of P value was computed with 1,000 
permutations.

Microsatellite analyses

Further, using our SSRs dataset, we estimated the genetic 
diversity indexes by the number of alleles (A), the allelic 
richness  (AR), the observed (Ho) and expected heterozy-
gosity (He), private alleles (PA), and inbreeding coefficient 
(FIS; Brown 1970) in diveRsity and PopGenReport pack-
ages (Keenan et al. 2013; Adamack and Gruber 2014) for 
R (Team 2021). Then, we estimated the relatedness among 
individuals (r) using the algorithm of Lynch and Ritland 

http://accstr.ufl.edu/ccmtdna.html
http://accstr.ufl.edu/ccmtdna.html
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U
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due to high m
issing genotypes, and neither for R
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because w
e obtained only the D

-loop data from
 Sham

blin 
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Results

G
enetic diversity

For this study, w
e sam

pled 251 individuals including one 
dead m

ale, and 250 adult fem
ales, w

hich w
ere successfully 

sequenced. From
 Sham

blin et al. (2014), w
e com

piled 131 
D

-loop 867 bp haplotypes. Then, w
e built the “com

piled 
SW

A
” totalizing 382 sequences, w

ith h w
as 0.487 and π 

ranging being 0.00064 (Table 1).
W

e identified eight haplotypes for the SW
A

 overall, being 
A

4.2 the m
ost frequent (65.7%

), follow
ed by A

4.1 (28.5%
) 

(Table 1; Fig. 1A
). The A

4.3 (N
 =

 5) and A
25.1 (N

 =
 7) w

ere 

Table 1  Genetic characterization of the Caretta caretta from Southwest Atlantic, based on mtDNA D-loop and SSRs dataset, comparing the nesting areas

N sampling size, H number of haplotypes, Haplotypes code of haplotypes and its frequencies, h ± SD haplotype diversity and standard deviation; π ± SD nucleotide diversity and standard devia-
tion, *new D-loop haplotypes. A total number of alleles,  AR mean allelic richness, r mean relatedness, Ho mean observed heterozygosity, He mean expected heterozygosity, PA private alleles, 
Fis inbreeding coefficient. ªMean values.

Datasets D-loop SSRs

Nesting areas N H Haplotypes (f) h ± SD π ± SD Reference N A AR r Ho He PA Fis

SE 35 3 A4.1 (8); A4.2 (22); A24.1 (5) 0.548 ± 0.073 0.00075 ± 0.0006 This study and Shamblin et al. 
(2014)

4 39 2.6 19.627 0.444 0.433 0 0.003

BA 62 4 A4.1 (23); A4.2 (36); A4.6 (1)*; 
A24.1 (2)

0.533 ± 0.038 0.00070 ± 0.0006 This study and Shamblin et al. 
(2014)

29 213 14.2 31.330 0.819 0.823 13 0.009

ES 236 6 A4.1 (69); A4.2 (153); A4.3 (5); 
A4.4 (1)*; A4.5 (1)*; A25.1 (7)

0.495 ± 0.026 0.00065 ± 0.0006 This study and Shamblin et al. 
(2014)

134 144 9.6 31.322 0.822 0.838 81 0.019

RJ 49 2 A4.1 (9); A4.2 (40) 0.306 ± 0.071 0.00039 ± 0.0004 Shamblin et al. (2014)
SWA overall 251 8 A4.1 (72); A4.2 (166); A4.3 (2); 

A4.4 (1)*; A4.5 (1)*; A4.6 (1)*; 
A24.1 (2); A25.1 (7)

0.435 ± 0.089 0.00068 ± 0.0002 This study 167 132ª 8.80ª 27.426ª 0.816ª 0.841ª 31.3ª 0.031ª

Compiled SWA 382 8 A4.1 (109); A4.2 (251); A4.3 (5); 
A4.4 (1)*; A4.5 (1)*; A4.6 (1)*; 
A24.1 (7); A25.1 (7)

0.487 ± 0.021 0.00064 ± 0.0006 This study and Shamblin et al. 
(2014)
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identified only in the ES nesting area (Table 1; Fig. 1A). 
Additionally, we identified three new haplotypes the A4.4, 
A4.5, and A4.6 (see * in Table 1; Fig. 1A, B). We sampled 
only one male in the 2018/19 nesting year in Guriri beach 
(ES) and it bears the haplotype A4.2. The haplotype network 
resulted in a star pattern where the A4.2 is the central and 
the most frequent haplotype and the others originated from 
it by only one mutation step each (Fig. 1B).

From the 15 SSRs, only four deviated from the HWE 
after Bonferroni correction, and only one locus (CcP2F11) 
presented > 10% null allele frequency (Table S1). Overall, 
we retrieved high genetic diversities (A = 132, AR = 8.80, 
mean r = 27.426, HO = 0.816, HE = 0.841, mean PA = 31.3, 
and FIS = 0.031), where the HO was higher than HE for almost 
all populations, and the FIS was in general low and some-
times negative indicating outbreeding, which opposed to the 
relatedness (r) that were moderate-high for all (Table 1). The 
pairwise r between the nesting areas was higher between the 
ES and BA (r = 32.103) followed by BA and SE (r = 31.792), 
and ES and SE (r = 29.940) (Fig. S1).

Population structure

The D-loop and SSRs’ population structure analyses yielded 
different results. Using only our D-loop dataset (SWA over-
all) (N = 251), neither pairwise FST nor AMOVA yielded 
significant differences (Tables 2, 3). However, for compiled 
SWA (N = 382), two pairwise FST comparisons were signifi-
cant (P value ≤ 0.05) involving RJ versus ES and RJ versus 

BA (Table 2). The additional AMOVA comparisons using 
the compiled SWA dataset (N = 381) did not confirm the 
hypothetical stock structure (all FCT values were non-signif-
icant) but were significant among the four discrete popula-
tions from SWA (global FST = 0.019, P = 0.046) (Table S2).

On the other hand, using the SSRs dataset, all pairwise 
FST comparisons and AMOVA were highly significant (P 
value ≤ 0.001) (Table 2), being the population structure 
detected in all three population levels being the highest 
variability (72%) observed within individuals (FIS = 0.278) 
(Table 3).

DAPC detected four genetic clusters based on the lowest 
BIC explaining 97% of the genetic differentiation across the 
individuals (FIT = 0.260, P value ≤ 0.001) (without popula-
tion assigned) (Fig. 2A). Genetic clusters k2 and k3 were 
found in all nesting areas, while k1 was found in the ES and 
BA, and k4 was exclusive for the ES nesting area (Fig. 2B). 
While, when individuals were clustered in their respective 
nesting areas, the DAPC demonstrates that there is a more 
homogeneous distribution within the areas (attributed to dis-
tinct colors: yellow to SE, brown to ES, and black to BA in 
Fig. 2C) and low admixture (sharing genetic pattern ≥ 50%) 
between them except for 22 individuals (Fig. 1C), one indi-
vidual of SE shared patterns with ES, three individuals of 
ES shared patterns with SE, seven individuals of ES shared 
patterns with BA, 11 individuals of BA shared patterns 
with ES, and there were no sharing patterns among SE and 
BA (Fig. 2C). PCoA identified 99.83% of genetic variation 
between areas demonstrating great genetic distance among 

Table 2  Pairwise FST based on 
SSR’s dataset (below diagonal) 
and based on mtDNA dataset 
(above diagonal) for the Caretta 
caretta Southwest Atlantic 
from this study, comparing the 
nesting areas.

1 Data of this study, 2Data compiled from this study and Shamblin et al., (2014) based only on D-loop hap-
lotypes. The numbers in bold represent significant comparisons for P value ≤ 0.001, and * represents P 
value ≤ 0.05

SWA overall1 Compiled SWA2

SE ES BA RJ2 SE ES BA RJ

SE – −0.046 −0.073 0.009 SE – 0.009 0.010 0.044
ES 0.072 – −0.014 0.025 ES – 0.003 0.031*
BA 0.082 0.047 – 0.035 BA – 0.080*
RJ – RJ –

Table 3  AMOVA of Caretta caretta of the Southwest Atlantic, based on mtDNA and nDNA (data from this study), comparing the nesting areas 
SE, ES, and BA

Numbers in bold represent significant comparisons for P value ≤ 0.001

SE X ES X BA mtDNA: D-loop nDNA: SSRs

Among populations Within populations Among populations Among individuals Within individuals

Standard variation 0.132 1.018 59.017 0.160 1.603 4.572
% Variation −2.04 −0.46 102.50 3 25 72
Significance tests FST = −0.025 FIT = −0.004 FIS = −0.020 FST = 0.025 FIT = 0.260 FIS = 0.278
P value 0.745 0.558 1.000 0.001 0.001 0.001
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them (Fig. 1D). The sharing of genetic clusters by DAPC 
between the nesting areas (Fig. 2C) and PCoA (Fig. 2D) 
results explain the low genetic variation obtained by pair-
wise FST and AMOVA in all levels, but they were highly 
significant (P value ≤ 0.001) (Tables 2, 3).

Discussion

This study evaluated the population structure and the genetic 
composition changes in the SWA loggerheads along space 
(RJ, ES, BA, and SE) and time (from 1999 to 2021) using 
for the first time SSRs dataset and comparing our D-loop 
dataset with the previous studies. Overall, the SSRs results 
demonstrate that distinct compositions at populational and 
individual levels may have generated distinct genetic clusters 
between the SWA females, distinguishing them by nesting 
areas. Therefore, our results also attest that each nesting 
area is genetically independent as MU, contrasting with 

the previous studies that suggested two (Reis et al. 2010) 
or three (Shamblin et al. 2014) potential genetic stocks for 
SWA. Such differences could be associated with the origin of 
molecular markers used in those studies (matrilineal inherit-
ance, mtDNA) and from ours (SSRs, nDNA), which dem-
onstrate the improvement in using molecular markers with 
biparental inheritance to refine population genetics analysis 
and has been well accepted for the sea turtles’ studies world-
wide (e.g., Naro-Maciel et al. 2007; Monzón-Argüello et al. 
2010; Dutton et al. 2013; Gallego-Garcia et al. 2018; Loisier 
et al. 2021; Vargas et al. 2022).

Spatial population structure, philopatry, 
and admixture

A spatial population structure was detected for the SWA 
loggerheads, using both D-loop and SSRs. Although the 
“compiled SWA” results for mtDNA alone presented a low 
resolution to detect population structure signals among the 

Fig. 2  Population structure of the Caretta caretta of the Southwest 
Atlantic based on SSRs’ dataset obtained by DAPC (A–C) and PCoA 
(D). A The identification and distribution of four genetic clusters [k1, 
k2, k3, and k4]. B the individual assignment probability [vertical 
bars] to be clustered [0–100%] in the genetic clusters [k1–k4] without 
population assigned. The colors indicate the shared proportion of the 
genetic clusters as a legend. C the individual assignment probability 

[vertical bars] to be clustered [0–100%] in its respective nesting areas 
[SE, ES, and BA]. The arrow points to the unique sampled male of 
the study. The colors indicate the shared proportion of the nesting 
areas as a legend. D PCoA results demonstrate the genetic variation 
between the SE, ES, and BA nesting areas for which the FST is also 
given
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nesting areas, the SSRs’ results detected a highly significant 
signal of population structure with great genetic variation. 
The pairwise comparisons corroborated that once the high-
est values were found between BA and SE, which are about 
160 km geographically closer than ES and SE which are 
about 960 km geographically distant, and ES and BA are 
about 800 km apart (Table 2). Interestingly, according to 
the SSRs results, there is a spatial population structure that 
was evidenced by distinct genetic clusters for each nesting 
area, and it was not previously detected for other C. caretta 
populations worldwide (e.g., Moore and Ball 2002; Monzón-
Argüello et al. 2010; Carreras et al. 2018; Loisier et al. 
2021). We advocate that the philopatric behavior by related 
SWA females may be generating such spatial structure and 
has directly reflected in their kinship within each nesting 
area and diverging among them, which is corroborated by 
the r results (Table 1; Fig. S1). The philopatry behavior has 
been genetically explored for the Mediterranean RMU log-
gerheads populations which have been linked to restricted 
gene flow among the nesting grounds, and only detected 
when using SSRs dataset (Clusa et al. 2018; this study). 
In accordance, our findings attest to the high fidelity of the 
SWA females to return to their birth areas to nest (Marco-
valdi et al. 2016; Baltazar-Soares et al. 2021), which were 
previously registered by mark–recapture and telemetry 
methods (Marcovaldi et al. 2010; Barreto et al. 2019), pos-
tulated by geomagnetism studies (e.g., Cameron et al. 2019), 
but for the first time was detected a genetic signal defining 
their spatial population structure.

Despite the philopatric behavior, the detection of indi-
viduals with admixture patterns signalizes to us that there 
was sharing ancestry by nesting areas. This suggests that 
may have resulted from the reproduction of parents from 
different origins and/or the mothers mating with the same 
males near the nesting beach as already postulated by Mar-
covaldi et al. (2016). This assumption is corroborated by the 
detection of 18 admixture individuals among the ES and BA 
nesting areas with low FST (FST = 0.047). Besides, admixture 
individuals were identified between areas, which may be 
attached to their kinship and complex life history with low 
male-mediated gene flow. Such admixture patterns have also 
been found for the sea turtle Natator depressus Garman, 
1880 (FitzSimmons et al. 2020), and for the C. caretta of 
the Mediterranean RMU (Clusa et al. 2018) but for the first 
time for the SWA.

On the other hand, it is uncertain whether the spatial 
genetic population structure of the C. caretta can be due 
to the mere lack of gene flow, as the exchange of only one 
migrant could be sufficient to prevent the accumulation of 
large genetic differences between populations (Wright 1931; 
Mills and Allendorf 1996). Because, although we only sam-
pled one male, we suggest that they may also be displaying 
a degree of fidelity to natal breeding areas (e.g., Clusa et al. 

2018; Medeiros et al. 2019) due to the high genetic similar-
ity among those females within the SWA nesting areas and 
could be more related to some levels of male-mediated gene 
flow within the same nesting seasons than among consecu-
tive seasons within the same nesting area. However, neither 
migration and/nor gene flow was previously studied in the 
SWA due to probably low genetic variation of the D-loop at 
the individual level (e.g., Reis et al. 2010; Shamblin et al. 
2014; Reid et al. 2019). Thus, further studies should deeply 
investigate the demographic patterns between the popula-
tions of these nesting areas using SSRs to solve our proposed 
hypothesis.

Conservation genetic concerns

The SWA loggerheads’ populations present unique D-loop 
haplotypes composition that underlies its lineage, which has 
been the subject of numerous discussions about its origin 
and expansion compared with other RMU of the Indo-Pacific 
and Mediterranean-Atlantic (e.g., Wallace et al. 2010; Reid 
et al. 2019; Baltazar-Soares et al. 2020). Therefore, this 
study offers a new perspective on the spatial genetic pat-
tern distribution of those SWA lineages, improving our 
understanding of philopatric behavior using SSRs against 
mtDNA. Herein, we provided valuable information on the 
unique genetic clusters at a highly localized geographic scale 
(within the SWA nesting areas), and attest that the SWA 
populations are isolated from the other RMU. Also, we dem-
onstrate that each SWA nesting area may be treated as an 
independent MU for C. caretta conservation as a species, 
which can contribute to further studies underlying the origin 
of individuals from feeding grounds or washed ashore.

Besides, at the SWA scale, our population structure 
results warn on the conservation status of these loggerhead 
subpopulations, especially from ES nesting area, because it 
was subjected to several environmental impacts (IBAMA 
2015; Fernandes et al. 2016; Segura et al. 2016; Hatje et al. 
2017; Almeida et al. 2018; Burritt and Christ 2018; Magris 
et al. 2019; Coimbra et al. 2020; Lacerda et al. 2020), and 
has been identified as an important male nursery for the 
SWA (Marcovaldi et al. 2016). On the ES coast, recently, 
it has been detected and monitored the presence of heavy 
metals at distinct trophic levels, being in algae, microcrus-
taceans (Vergilio et al. 2021), fishes assemblies (Bonecker 
et al. 2019; Lacerda et al. 2020), and eggs and hatchlings of 
other sea turtles as the leatherback Dermochelys coriacea 
(Linnaeus, 1766) (Freire et al. 2021), from immature green 
turtle Chelonia mydas (Linnaeus, 1758) (Frossard et al. 
2020; Miguel et al. 2022), and late juveniles of loggerheads 
(Cantor et al. 2020). The presence of heavy metals has been 
also reported for other C. caretta subpopulations worldwide 
(Jerez et al. 2010; Yipel et al. 2017; Canzanella et al. 2021). 
The assumed metals bioaccumulation can compromise birth 
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rate, decrease health status in adult individuals, and culmi-
nate in declines in census population sizes and effective 
population size in the next generations (e.g., Bowem et al. 
2005; Kobayashi et al. 2017; Erb and Wyneken 2019).

However, to date, the relation between the shifts in 
genetic diversity and unique genetic clusters as a response to 
environmental stress was not reported for other loggerheads 
RMUs worldwide (e.g., Bjorndal and Bolten 2008; Shamblin 
et al. 2014; Carreras et al. 2018; Reid et al. 2019; Loisier 
et al. 2021). Thus, the loss of genetic diversity detected 
herein can be detrimental for the SWA population, which 
we presume may present less resilience, ability to circum-
vent anthropic impacts, and to remain genetically healthy in 
the long term due to threats like bycatch, climate changes 
but also to the environmental accidents that could impair 
not only maintenance of the next generations but also its 
survivorship (e.g., Hawkes et al. 2007; Colman et al. 2020; 
Martín-del-Campo et al. 2021; McCallum 2021; Soares et al. 
2021).

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00227- 023- 04212-5.
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