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Abstract
Sea turtles are vulnerable to climate change since their reproductive output is influ-
enced by incubating temperatures, with warmer temperatures causing lower hatching 
success	and	increased	feminization	of	embryos.	Their	ability	to	cope	with	projected	
increases in ambient temperatures will depend on their capacity to adapt to shifts 
in climatic regimes. Here, we assessed the extent to which phenological shifts could 
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1  |  INTRODUC TION

The world's climate is changing at an unprecedented rate (Loarie 
et al., 2009).	As	a	response,	species,	from	polar	terrestrial	to	tropi-
cal marine environments, have started to alter their phenology (e.g., 
timings of cyclical or seasonal biological events), shift their geo-
graphic distribution, and modify their trophic interactions (Dalleau 
et al., 2012; Parmesan & Yohe, 2003; Walther et al., 2002). Species' 
responses to climate change can occur through at least three con-
trasting	but	non-exclusive	mechanisms:	 (1)	range	shifts,	 (2)	pheno-
typic plasticity, and (3) microevolution via natural selection (Fuentes 
et al., 2020; Hulin et al., 2009; Waldvogel et al., 2020).

Range shifts might be observed by sea turtles responding to 
changes in climate by shifting their range to more climatically suitable 
areas	(Abella	Perez	et	al.,	2016; Mainwaring et al., 2017).	 It	 is	crucial	
that	 these	areas	provide	 the	environment	necessary	 for	 colonization	
and are conducive to egg incubation (Fuentes et al., 2020; Pike, 2013). 
However, it has been indicated that areas with climatically suitable en-
vironments might be impacted by other stressors (e.g., sea level rise, 
coastal development), which might hinder the potential adaptive capac-
ity of sea turtles (Fuentes et al., 2020). Phenotypic plasticity allows in-
dividuals to cope with environmental changes and relates to the ability 

of individuals to respond by modifying their behavior, morphology, or 
physiology in response to an altered environment (Hughes, 2000; Hulin 
et al., 2009; Waldvogel et al., 2020). Microevolution refers to adapta-
tion occurring because of genetic change in response to natural selec-
tion (Lane et al., 2018). Phenotypic plasticity provides the potential for 
organisms to respond rapidly and effectively to environmental changes 
and	thereby	cope	with	short-term	environmental	change	(Charmantier	
et al., 2008;	Przybylo	et	al.,	2000; Réale et al., 2003). However, phe-
notypic plasticity alone may not be sufficient to offset against pro-
jected impacts from climate change (Gienapp et al., 2008;	Schwanz	&	
Janzen,	2008). Microevolution, on the other hand, is thought essential 
for	 the	 persistence	 of	 populations	 faced	 with	 long-term	 directional	
changes in the environment. However, the ability of microevolutionary 
responses to counteract the impacts of climate change is unknown, be-
cause rates of climate change could outpace potential responses (Hulin 
et al., 2009; Morgan et al., 2020; Visser, 2008) although see Tedeschi 
et al. (2015).

It	 is	 unclear	 whether	 potential	 adaptive	 responses	 by	 turtles	
will be sufficient to counteract projected impacts from climate 
change	 (Monsinjon,	 Lopez-Mendilaharsu,	 et	 al.,	 2019; Moran & 
Alexander,	 2014; Morjan, 2003). For example, sea turtles have per-
sisted through large changes in climate during the millions of years that 
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mitigate impacts from increases in ambient temperatures (from 1.5 to 3°C in air tem-
peratures and from 1.4 to 2.3°C in sea surface temperatures by 2100 at our sites) 
on	four	species	of	sea	turtles,	under	a	“middle	of	the	road”	scenario	(SSP2-4.5).	Sand	
temperatures at sea turtle nesting sites are projected to increase from 0.58 to 4.17°C 
by	2100	and	expected	shifts	in	nesting	of	26–43 days	earlier	will	not	be	sufficient	to	
maintain current incubation temperatures at 7 (29%) of our sites, hatching success 
rates at 10 (42%) of our sites, with current trends in hatchling sex ratio being able 
to be maintained at half of the sites. We also calculated the phenological shifts that 
would be required (both backward for an earlier shift in nesting and forward for a later 
shift)	to	keep	up	with	present-day	incubation	temperatures,	hatching	success	rates,	
and sex ratios. The required shifts backward in nesting for incubation temperatures 
ranged	from	−20	to	−191 days,	whereas	the	required	shifts	forward	ranged	from	+54 
to +180 days.	However,	for	half	of	the	sites,	no	matter	the	shift	the	median	incuba-
tion temperature will always be warmer than the 75th percentile of current ranges. 
Given that phenological shifts will not be able to ameliorate predicted changes in 
temperature, hatching success and sex ratio at most sites, turtles may need to use 
other adaptive responses and/or there is the need to enhance sea turtle resilience to 
climate warming.

K E Y W O R D S
adaptive response, climate change, ectotherms, marine turtles, phenology, reproductive 
output, sea turtles
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they have existed, demonstrating a biological capacity to adapt (Maurer 
et al., 2021;	Mitchell	&	Janzen,	2010; Rage, 1998). Nevertheless, there 
is growing concern over the potential impacts that projected tem-
perature increases might have on sea turtles (Patrício et al., 2021). 
Temperature plays a central role in sea turtle embryonic development, 
hatching success, hatchling sex ratios (Hays et al., 2017; Standora & 
Spotila, 1985), hatchling morphology, energy stores, and locomotor 
performance (Booth, 2017). Sea turtle eggs only successfully incubate 
within a narrow thermal range (25 and ~35°C), with incubation above 
the thermal threshold resulting in hatchlings with higher morpholog-
ical abnormalities and lower hatching success (Howard et al., 2014; 
Miller, 1985).	 Furthermore,	 sea	 turtles	 have	 temperature-dependent	
sex determination, a process by which the incubation temperature de-
termines the sex of hatchlings (Mrosovsky, 1980). The pivotal tempera-
ture (PT ~28.9–30.2°C for the species studied here, Figure S1), where 
a 1:1 sex ratio is produced, is centered within a transitional range of 
temperatures (~1.6–5°C, Figure S1), that generally produces mixed sex 
ratios. Values above the PT will produce mainly female hatchlings while 
values below produce mainly males (Mrosovsky, 1980).

Thus,	projected	increases	in	temperature	may	cause	feminiza-
tion of sea turtle populations and decrease reproductive success 
(Patrício et al., 2021). Many studies have suggested that sea tur-
tles may adapt to increases in temperature by altering their nest-
ing behavior, through changes in their nesting distribution, and 
nest-site	 choice	 (Kamel	 &	Mrosovsky,	2006; Morjan, 2003), and 
by	 shifting	 nesting	 to	 cooler	 months	 (Almpanidou	 et	 al.,	 2018; 
Dalleau et al., 2012; Pike et al., 2006; Weishampel et al., 2004). 
Earlier nesting has already occurred in some turtle populations as 
a response to climatic warming (e.g., Pike et al., 2006; Weishampel 
et al., 2004). However, it is unclear whether phenological and be-
havioral shifts can sufficiently buffer the effects of rising tempera-
tures	 (Almpanidou	 et	 al.,	2018; Laloë & Hays, 2023; Monsinjon, 
Lopez-Mendilaharsu,	 et	 al.,	 2019).	 Although	 two	 other	 studies	
(Almpanidou	 et	 al.,	 2018; Laloë & Hays, 2023) have explored 
whether	earlier	shifts	in	phenology	can	preserve	the	present-day	
thermal niche of sea turtle nesting environment in a changing 
climate,	 only	 one	 other	 study	 (Monsinjon,	 Lopez-Mendilaharsu,	
et al., 2019) explores the implications of phenological responses 
to sea turtle reproductive output (hatching success and primary 
sex ratio), of which they focused on loggerhead turtles (Caretta 
caretta). Given that different sea turtle species have different spa-
tial–temporal nesting patterns, we expand from this study focused 
on loggerhead turtles to assess the extent to which phenological 
shifts by four different species of sea turtles could mitigate in-
creases in temperature at different sea turtle nesting sites glob-
ally to maintain the reproductive output of affected populations. 
Furthermore, to build on previous work, we explore whether nest-
ing populations could benefit from both an earlier and a later phe-
nological shift. To do so, we calculated the shift (backward and 
forward, respectively) that would be required for incubation tem-
perature, hatching success, and sex ratio to stay similar to current 
ranges.	In	doing	so	we	are	the	first	study	to	date	to	investigate	the	
implications of a later nesting by sea turtles.

2  |  MATERIAL S AND METHODS

2.1  |  Modeling framework

We considered the capacity of green (Chelonia mydas, Cm), log-
gerhead (Caretta caretta, Cc), hawksbill (Eretmochelys imbricata, Ei), 
and olive ridley (Lepidochelys olivacea, Lo) turtles to counteract the 
impacts of climate change on incubation temperature, hatching 
success, and sex ratio by temporally shifting their nesting season. 
We included 24 nesting sites globally which are part of 11 differ-
ent regional management units (RMUs as per Wallace et al., 2010; 
Table S1). To predict overall hatching success and sex ratios at our 
study sites (scaling up spatially and temporally across levels: from 
the nest to the whole rookery; across the entire nesting period), we 
followed a method developed by Monsinjon, Wyneken, et al. (2019) 
for the loggerhead sea turtle (Figure 1). We calculated a seasonal 
indicator of mean incubation temperature (average weighted by 
the number of nests), hatching success (average survival proportion 
weighted by the number of nests), and sex ratio (average male or 
female proportion weighted by the hatching success and the number 
of nests). The approach consisted of six steps: (1) reconstruction of 
current (1979–2020) nest temperature at nesting sites, (2) modeling 
embryonic growth in clutches from the same RMU, (3) inferring ther-
mal tolerances at the species level, (4) developing sex ratio thermal 
reaction norms at the species level, (5) describing nesting seasonal-
ity for each nesting site, and (6) forecasting nest temperature, hatch-
ing success and sex ratio under a scenario of climate warming, while 
considering	a	potential	temperature-driven	shift	in	nesting	phenol-
ogy (Figure 1). We give details on each step below and highlight any 
adjustments or improvements applied in the present study in rela-
tion to the Monsinjon, Wyneken, et al. (2019) analysis.

2.2  |  Current clutch temperature

Based on a correlative approach with sea surface temperature and 
air temperature (Bentley et al., 2020; Fuentes et al., 2009; Girondot 
& Kaska, 2015; Laloë et al., 2020; Monsinjon, Jribi, et al., 2017), we 
reconstructed the daily nest temperature at each of our study sites 
between January 1979 and December 2020. For this, we obtained sea 
and	 air	 temperatures	 from	 the	European	Centre	 for	Medium-Range	
Weather	Forecasts	(ECMWF)	climate	reanalysis	v5	(ERA5;	hourly	time	
series	at	0.25° × 0.25°	spatial	resolution;	Hersbach	et	al.,	2020) at each 
site	and	fitted	a	linear	mixed-effect	model	to	our	in	situ	daily	nest	tem-
peratures using the R package “nlme” (Pinheiro et al., 2022) with nest 
identity	as	random	effect	and	an	ARMA	correlation	structure.	To	es-
timate metabolic heating (i.e., the increase in temperature within the 
egg chamber as compared to the surrounding incubation substratum), 
we used the proportion of incubation time as an additional predictor. 
This produces a proxy for metabolic heating specific to each nesting 
site (Monsinjon, Guillon, et al. (2017) for details). The values obtained 
(i.e., the increase in temperature at the end of incubation, Table S1) 
ranged from 0.46 to 5.55°C, which is similar to those presented by 
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(Gammon et al., 2020).	Based	on	the	lowest	Akaike	information	crite-
rion	(Burnham	&	Anderson,	2002), we selected the best model from a 
set of candidates using a daily lag with air or sea temperature varying 
from	0	(i.e.,	synchronous	relationship	with	nest	temperature)	to	5 days	
(i.e., lagged relationship with nest temperature at day+5). Following 
(Monsinjon, Guillon, et al., 2017), we used the standard deviation 
of the coefficients of the random effect as a proxy of nest thermal 
heterogeneity at the nesting beach scale (see Monsinjon, Wyneken, 
et al., 2019) for its application in sea turtles. Finally, we estimated the 
coefficients of each predictor (sea surface temperature, air tempera-
ture, and proportion of incubation time) for the selected model within 
a	standard	generalized	linear	model	framework	using	a	Gaussian	link	
function. To reconstruct diel thermal fluctuation, we computed daily 
maximum and minimum temperatures as follows: average daily tem-
perature ± average	daily	amplitude	(as	defined	by	daily	maxima − daily	
minima). We set daily maximum and minimum temperatures at the 
average time of day (decimal hours) when they occurred (mean daily 
amplitude and average time of day for minima and maxima are given 
in Table S1 along with the other parameters used to reconstruct nest 
temperatures).

2.3  |  Embryonic development

To	 predict	 the	 progression	 of	 embryo	 size	 during	 incubation	
and hence estimate the dates of each embryonic stage along 
our nest temperature time series, we used two equations de-
scribing, respectively, the thermal reaction norm of embryonic 

growth rate and a growth function of incubation time (Fuentes 
et al., 2017; Girondot et al., 2018; Girondot & Kaska, 2014; 
Monsinjon, Jribi, et al., 2017) using the R package “embryogrowth” 
(Girondot, 2022a). This method requires nest temperature data 
and measurements of the straight carapace length of hatchlings. 
Based on our field data (Table S1)	and	assuming	a	Gompertz	model	
for embryo growth, we estimated the four parameters of the model 
(Schoolfield et al., 1981) using maximum likelihood (Girondot & 
Kaska, 2014). Here we identified the posterior distributions to 
compute confidence intervals using Bayesian Markov chain Monte 
Carlo (MCMC) with the Metropolis–Hasting algorithm (Chib & 
Greenberg, 1995) on 10,000 iterations. We used the values esti-
mated with maximum likelihood as initial parameters and assumed 
a uniform distribution for priors. To ensure the acceptance rate 
across iterations was optimal, we followed the adaptive proposal 
distribution procedure (Rosenthal, 2011) implemented in the R 
package “HelpersMG” (Girondot, 2022b).	Once	calibrated,	we	ran	
the embryonic growth model along reconstructed nest tempera-
tures to estimate, for any given day a clutch would be laid, the du-
ration	of	incubation	(i.e.,	when	embryo	size	reaches	hatchling	size)	
and the position of the thermosensitive period of development for 
sex determination within that nest (Girondot et al., 2018).

2.4  |  Thermal tolerance and hatching success

We	used	 the	 flexible-logistic	model	 described	 in	 Abreu-Grobois	
et al. ( 2020) and implemented in the R package “embryogrowth” 

F I G U R E  1 Modeling	framework	to	predict	overall	hatching	success	and	sex	ratio	at	our	study	sites	(scaling	up	from	the	day-nest	level	to	
the	season-beach	level),	modified	from	Monsinjon,	Wyneken,	et	al.	(2019). * is to indicate seasonal index of incubtaion temperature, hatching 
success or sex ratio.
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stages
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offspring sex
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diel thermal 
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(Girondot, 2022a) to describe the transition from maximal to 0% 
survival at temperatures where embryos fail to develop. This 
model allows for asymmetrical transitions in survival propor-
tion at lethal temperatures (i.e., around 25°C and 33–35°C, with 
variation among species, Howard et al., 2014). We estimated the 
parameters of the thermal tolerance curve specifically for each 
species using literature data on hatching success measured at sev-
eral controlled temperatures (i.e., held constant) during incubation 
experiments (Table S2). We first estimated the parameters using 
maximum likelihood and then we identified the posterior distribu-
tions to compute confidence intervals following the procedure de-
scribed above (i.e., Bayesian MCMC with the Metropolis–Hasting 
algorithm and the adaptive proposal distribution) on 100,000 
iterations assuming a uniform distribution for priors. Following 
Monsinjon, Wyneken, et al. (2019) and Laloë et al. (2020), we cal-
culated hatching success from the mean temperature during the 
whole incubation after applying a correction parameter to control 
for deviations unrelated to temperature (Monsinjon, Wyneken, 
et al., 2019). The correction parameter was estimated by compar-
ing in situ hatching success data (using data from the literature 
and the present study: see Table S3) with predicted ones (i.e., 
from	mean	temperature + correction	factor)	and	searching	for	the	
value	that	minimizes	the	dispersion	of	residuals.	As	previous	stud-
ies used +0.32°C for loggerhead turtles (Monsinjon, Wyneken, 
et al., 2019) and +0.82°C for green turtles (Laloë et al., 2020), we 
restricted	our	search	between	−1°C	and	+1°C.

2.5  |  Sex ratio thermal reaction norm

To predict sex ratio (i.e., the proportion of males or females) at 
the scale of a clutch, we estimated the thermal reaction norm of 
sex ratio (i.e., the relationship between male proportion and tem-
perature when held constant during incubation) using the logistic 
equation described in Monsinjon et al. (2022) and implemented in 
the R package “embryogrowth” (Girondot, 2022a). We estimated 
the equation parameters specifically for each species using litera-
ture data on sex ratio measured at several controlled temperatures 
(i.e., held constant) during incubation experiments (Table S4). We 
first estimated the parameters using maximum likelihood and 
then identified the posterior distribution of the parameters using 
Bayesian MCMC with the Metropolis–Hasting algorithm and the 
adaptive proposal distribution on 100,000 iterations assuming 
a Gaussian distribution for priors. We used a Gaussian distribu-
tion here since the values for the parameters do not vary much 
among sea turtle species. From our embryonic growth model, we 
estimated the position of the thermosensitive period of develop-
ment (BeginTSP to EndTSP in the equation below), using the values 
estimated by Monsinjon et al. (2022) for sex determination during 
incubation and extracted temperature traces and increments of 
embryo	size	within	this	period	(Girondot	et	al.,	2018).	As	pointed	
out in previous research (Fuentes et al., 2017; Georges et al., 1994, 
2005), the simple mean temperature is not an appropriate proxy 

for	 sex	 ratio.	 Therefore,	we	 calculated	 a	 growth-weighted	 aver-
age temperature (i.e., a constant temperature equivalent or CTE) 
and, following a recent improvement (Monsinjon et al., 2022), we 
added	the	level	of	sexualization	(initially	estimated	for	loggerhead	
turtles	nesting	in	Florida,	USA)	to	the	weighting	scheme.	We	cal-
culated	 the	 growth-weighted	 sexualization-weighted	 average	
temperature (CTE) as follows:

where Tt is the temperature at time t, Δtime is the time difference be-
tween two successive records, Growth	is	the	size	increment	between	
two successive records, and TRNS

(

Tt

)

× S − TSP(t) is the level of sexu-
alization	defined	by	the	thermal	reaction	norm	of	sexualization	(TRNS )	
at Tt	 and	 the	 sensitivity	of	 sexualization	during	 the	TSP	 (S − TSP) at 
time t.

2.6  |  Nesting dynamics

To scale up incubation temperatures, hatching successes, and sex 
ratios at the scale of a clutch to the whole nesting season based 
on daily nest numbers, we estimated the overall nesting dynamics 
(i.e., the progression of nest number throughout any season) at our 
study sites (see Figure S2). To do this, we used the model described 
in Girondot  (2010, 2017) available in the R package “phenology” 
(Girondot, 2020).	This	model	uses	a	negative-binomial	distribution	
for each ordinal day and has seven parameters that define nesting 
seasonality: (1) the date of the peak of nesting, (2) the average num-
ber of nests (or tracks) at the peak of the season, (3) its duration, (4) 
the minimum number of nests (or tracks) in periods out of the nest-
ing season, (5) the duration from the beginning of the season to the 
peak and (6) from the peak to the end (the beginning and the end 
being	 estimated	 via	 the	 parameter	 4),	 and	 (7)	 a	 negative-binomial	
parameter that controls for the dispersion around the mean. These 
parameters are components of a model described in Girondot (2010, 
2017). This model uses all available nests (or tracks) to estimate the 
date of the beginning and the end of nesting seasons (via the param-
eters 1, 5, and 6, described above), which is more appropriate than 
using the first and the last nesting attempts that could be sporadic 
events not representative of the underlying nesting dynamics (e.g., 
if nesting occurs all year round). Here, we assumed that the maxi-
mum did not flatten out around the peak, which is consistent with 
the	bell-shaped	distribution	of	nest	count	data	typically	observed	at	
our	study	sites.	To	minimize	constraints	on	the	parameters	that	con-
trol for the shape of nesting seasonality (i.e., when nesting begins, 
peaks, and ends), we estimated the maximum of each nesting season 
first while holding the “shape” parameters constant. Then we fixed 
the maximum to its estimated value, and we estimated the “shape” 
parameters	 in	a	second	round.	Finally,	we	standardized	the	overall	
nesting dynamics (number of nests or tracks per day) between 0 
and 1 so that all nesting sites are treated the same way, assuming a 

CTE =

∑EndTSP

t=BeginTSP

�

Tt × Δtime × Growth × TRNS
�

Tt

�

× S − TSP(t)
�

∑EndTSP

t=BeginTSP

�

Δtime × Growth × TRNS
�

Tt

�

× S − TSP(t)
�

,
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constant nesting success throughout the season. We treated the site 
Tetiaroa	Atoll	 (French	Polynesia)	with	 a	 different	 set	 of	 equations	
(described in Laloë et al., 2020) derived from the aforementioned 
model (Girondot, 2010, 2017) because green turtles can attempt to 
nest on each of the 12 islets (see Laloë et al., 2020) which are not 
monitored with the same effort. Given the varying nesting propor-
tion and monitoring effort at this site we estimated the maximum for 
each islet and each season to determine the overall nesting dynam-
ics of this site. For computation efficiency purposes, we assumed the 
minimum	number	of	nests	was	always	zero	during	the	low	season,	
except	for	olive	ridleys	nesting	at	Las	Cabras	(Mexico).	In	this	case,	
we	 also	 estimated	 season-specific	 minima	 because	 a	 non-negligi-
ble number of turtles came to nest sporadically all year round. We 
first estimated the parameters using maximum likelihood and then 
their distribution was estimated using Bayesian MCMC with the 
Metropolis–Hasting algorithm and the adaptive proposal distribu-
tion on 10,000 iterations assuming a Gaussian distribution for priors.

2.7  |  Climate and phenology scenarios

We considered two climate scenarios: current (hindcasting between 
2007	and	2020)	and	the	 IPCC's	SSP2-4.5	 “Middle	of	 the	 road”	sce-
nario	 (IPCC,	 2021); forecasting between 2059 and 2100. We pre-
dicted incubation temperature, hatching success, and sex ratio within 
the last two decades to stay representative of current day conditions 
and chose from 2007 onward as this period contains >97.5% of our 
hatching success field data (Table S5). We extracted mean tempera-
ture and sea surface temperature anomalies from the web interface 
(https://	inter	activ	e-	atlas.	ipcc.	ch/	regio	nal-	infor	mation)	 of	 the	 IPCC's	
Atlas	 (Gutiérrez	 et	 al.,	 2021) with the following settings: Region 
set = WGI	 reference-regions	 (or	 Small	 islands	 for	 the	 Tetiaroa	Atoll,	
French	Polynesia),	Uncertainty = Advanced,	Season = Annual,	Baseline	
period = 1981–2010,	and	Future	period = 2081–2100.	For	both	vari-
ables and within each region, we extracted the median change in 
temperature (Table S1). To forecast daily minimum and maximum nest 
temperatures between 2059 and 2100, we added those anomalies 
to our 1979–2020 baseline time series of air and sea surface tem-
perature and applied the model calibrated on contemporary data. We 
then computed daily hatching success and sex ratio along forecasted 
nest temperatures by iterating the steps described earlier. Finally, we 
considered three plausible phenology scenarios: (1) no shift in nesting 
phenology,	or	(2)	nesting	dates	will	shift	either	6.86 days	earlier	(here-
after referred to as the “mean” shift, ±SD = 4.23,	n = 16;	Table S6) or (3) 
18.85 days	earlier	(hereafter	referred	to	as	the	“maximum”	shift,	found	
in	Mazaris	et	al.,	2008) for every 1°C rise in sea surface temperature 
at nesting sites. We calculated the mean and maximum shifts based 
on an extensive search of previous studies that reported a significant 
negative relationship between nesting dates and seawater tempera-
ture in sea turtles (Table S6).	We	did	not	consider	non-significant	or	
positive relationships between the proxy for nesting phenology and 
the environmental cue (i.e., a delay of nesting dates with increas-
ing temperatures instead of a shift earlier as assumed in the present 

study). Based on these relationships and the expected regional anom-
alies	in	sea	surface	temperature	under	the	SSP2-4.5	warming	scenario,	
we estimated the expected number of days shifted in the future at our 
study sites (Table S1) and forecast our seasonal indicators of incuba-
tion temperature, hatching success, and sex ratio accordingly. When 
considering if sites would remain within current rates we considered 
conditions	within	a	2.5%	of	the	present-day	values	for	hatching	suc-
cess and sex ratio shift (i.e., difference between 25th percentile of cur-
rent and median of future <2.5% reduction) and within 0.5°C buffer 
for incubating temperature (i.e., difference between median of future 
and 75th percentile of current <0.5°C). To complement this analysis, 
we also calculated earlier and later phenological shifts that would be 
required in the future to stay within current conditions. To do so, we 
shifted	nesting	seasons	backward	(from	−1	to	−365 days)	and	forward	
(from +1 to +365 days)	and	we	retained	the	minimum	number	of	days	
earlier or later when the following conditions are met for each indi-
cator:	 (1)	median	 incubation	 temperature	 index	 ≤75th	 percentile	 of	
current	 indices,	 (2)	median	hatching	 success	 index	≥25th	of	 current	
indices,	and	 (3)	median	sex	ratio	 (male	proportion)	 index	≥25th	per-
centile of current indices.

2.8  |  Sensitivity analysis and fit quality

As	 sufficient	 data	were	 not	 available	 specifically	 for	 each	RMU,	we	
fitted thermal tolerance curves and sex ratio thermal reaction norms 
at the species level (i.e., pooling all available data, individually for each 
species) to benefit from the existent extensive literature data (Tables S2 
and S4). This approach allowed us to predict hatching success and sex 
ratio for sites where data were unavailable or too scarce at the RMU 
level (i.e., lack of data at low or high temperatures, Table S1). For our 
sensitivity analysis, we compared our predicted hatching success and 
sex	 ratio	 seasonal	 indices	 using	 either	 species-wide	 or	 RMU-wide	
data when available for both hatching success and sex ratio laboratory 
data. This allowed us to compare the outputs for loggerheads from the 
“Atlantic,	Northwest”	RMU	(2/6	loggerhead	sites;	1/4	RMUs),	hawks-
bills	from	the	“Atlantic,	Western	Caribbean/USA”	RMU	(4/7	hawksbill	
sites; 1/4 RMUs), and olive ridleys from the “Pacific, East” RMU (2/3 
olive ridley sites; 1/2 RMUs), but we could not compare the outputs 
for green turtles (eight green turtle sites; five RMUs) because there 
were no data available for any of the RMUs (thermal tolerance curves 
and sex ratio thermal reaction norms are presented in Figure S1 and 
details on sites and RMUs can be found in Table S1). We evaluated the 
robustness of our predictions by comparing predicted daily mean nest 
temperatures with recorded ones. We calculated the R2 coefficient of 
determination as a measure of fit quality.

3  |  RESULTS

Under	a	 “middle	of	 the	 road”	warming	scenario	 (SSP2-4.5),	 the	air	
temperature will increase on average by 1.5–3°C, and local sea 
surface temperature will increase by 1.4–2.3°C by 2100 across our 
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study sites, resulting in a 0.58–4.17°C increase in sand temperatures 
(Table S1).	According	to	the	maximum	expected	phenological	shift	
(18.85 days	earlier	 for	every	1°C	rise	 in	 local	sea	surface	tempera-
ture),	nesting	seasons	could	shift	from	26	to	43 days	earlier	on	aver-
age by 2100 at our study sites (n = 24,	Table S1).

Currently (2007–2020), the median incubation temperature 
at	 our	 study	 sites	 is	 30.1°C	 (25th–75th	 percentiles = 29.1–30.8°C),	
ranging from 26.1 to 32.1°C (Cc 26.1–32.1°C, Cm 28.8–32.1°C, Ei 
28.5–31.6°C, Lo 30.3–30.7°C; Figure 2; Figure S3). Under a “middle 
of the road” scenario (2059–2100), the median incubation tempera-
ture	will	rise	to	31.7°C	(25th–75th = 30.7–32.8°C),	ranging	from	28	
to 35.7°C (Cc 28–35.7°C, Cm 29.9–34.4°C, Ei 30.3–33.7°C, Lo 32.3–
33.1°C). With a maximum expected shift in phenology, the median 
decreases	to	31°C	(25th–75th = 30.1–32.5°C),	ranging	from	26.6	to	
34.2°C (Cc 26.6–33.9°C, Cm 29.7–33.6°C, Ei 28.8–33.8°C, Lo 31.9–
34.2°C; Figure 2). With a maximum shift in phenology only seven 
sites would be able to maintain current incubation temperature or 
lower.	To	keep	up	with	present-day	incubation	temperature	the	re-
quired	shifts	backward,	 for	an	earlier	nesting,	 ranged	 from	−20	 to	
−191 days	(Figure S3; Table S7), whereas the required shifts forward, 
for a later nesting, ranged from +54 to +180 days.	To	note	for	half	of	
the sites no matter the shift the median temperature will always be 
warmer than the 75th percentile of current ranges. The relationship 
between nesting dates and SSTs (i.e., the phenological rates) that 
would allow the required phenological shifts to be achieved are pre-
sented in Table S7.

Currently, the median hatching success rate at our study sites is 
80.1%	(25th–75th = 74.3%–82.7%),	ranging	from	53.5%	to	84.5%	(Cc 
76.1%–84.5%, Cm 73.2%–82.6%, Ei 65.7%–84%, Lo 53.5%–68.9%; 
Figure 3; Figure S4). Under a “middle of the road” scenario, hatching 
success	rates	will	drop	to	67.4%	(25th–75th = 46.3%–78.2%),	ranging	
from 1% to 84.5% (Cc 1%–84.5%, Cm 50.4%–81%, Ei 42.6%–75.2%, 
Lo 26.5%–57.5%), and with the maximum expected shift in phenol-
ogy	hatching	success	rates	increases	to	69.1%	(25th–75th = 50.8%–
79.9%), ranging from 15.3% to 84.5% (Cc 27.5%–84.5%, Cm 
59.1%–81.3%, Ei 41.1%–83.1%, Lo 15.3%–58.2%), with 10 of the 24 
nesting sites being able to maintain similar hatching success rates to 
current values (Figure S4; Table S8). To keep current hatching suc-
cess rates, the required shifts backward for an earlier nesting ranged 
from	 −1	 to	 −172 days	 (Figure S4; Table S7), whereas the required 
shifts forward for a later nesting ranged from +1 to +252 days.	With	
half of the sites being unable to maintain current hatching success 
rates no matter the shift undertaken. The relationship between nest-
ing dates and SSTs (i.e., the phenological rates) that would allow the 
required phenological shifts to be achieved is presented in Table S7.

Currently 6 of the 24 nesting sites produce more than 90% of 
female hatchlings and 6 of the 24 sites produce at least 50% male 
hatchlings (Figure 4; Figure S5). We predicted that under a “mid-
dle of the road” scenario, 16 of the 24 nesting sites will produce 
clutches comprising more than 90% female hatchlings, with only one 
site (Lepidochelys olivacea in las Cabras, Mexico) producing clutches 
with more than 50% male hatchlings. However, with the maximum 
expected phenological shifts, the number of sites producing more 

than 90% of females will reduce to 11, and three sites would produce 
more	than	50%	of	males.	Overall,	with	the	maximum	expected	phe-
nological shift, half of the sites will be able to maintain current sex 
ratios (Figure S5; Table S8) of which seven are expected to produce 
more	 than	 25%	males	 (loggerheads	 in	Wassaw	 Island	 and	Dalyan	
Turtle	beach,	greens	in	Akyatan	and	Alagadi	Turtle	beaches,	hawks-
bills in Fuwairit, and olive ridleys in Rushikulya and Las Cabras). The 
required shifts backward to keep current male proportions ranged 
from	 −1	 to	 −149 days	 (Figure S5; Table S7), whereas the required 
shifts forward ranged from +1 to +160 days.	With	eight	sites	being	
unable to keep current sex ratio no matter the shift undertaken. 
The relationship between nesting dates and SSTs (i.e., the pheno-
logical rates) that would allow the required phenological shifts to be 
achieved is presented in Table S7.

3.1  |  Model robustness

Overall,	there	is	good	agreement	between	predicted	and	recorded	
daily incubation temperatures with a R2 of .71 (Figure 5) that ranges 
from .2 to .91 when temperatures are compared individually for each 
site (Figure S6).	Our	sensitivity	analysis	shows	that	seasonal	indica-
tors of hatching success can be different for hawksbills (i.e., hatching 
success always higher under the warming scenario considered here 
when	using	data	at	the	species	level)	when	using	either	species-wide	
or	RMU-wide	laboratory	data	to	adjust	the	model	for	thermal	toler-
ances (Figure S7).	On	the	other	hand,	we	did	not	detect	substantial	
differences for loggerheads and olive ridleys, for both indicators of 
hatching success and sex ratio.

4  |  DISCUSSION

The maximum expected shift in nesting phenology will allow for 
some sites to maintain similar incubation temperatures (n = 7),	hatch-
ing success (n = 10),	and	sex	ratio	 (n = 12)	 to	current	values	 (2007–
2020). However, for half of the sites no matter the shift in phenology 
current rates of incubation temperature and hatching success will 
not be able to be maintained, with eight sites being unable to keep 
current male production no matter the shift undertaken. These re-
sults align with similar studies which found variability in the ability of 
phenological shifts to maintain current temperature levels and con-
sequently	productivity	(Almpanidou	et	al.,	2018; Laloë & Hays, 2023; 
Monsinjon, Wyneken, et al., 2019), with nesting sites further from 
the equator (>30° latitude) showing to have the greatest capacity 
to buffer impacts of predicted increases in nest temperatures (this 
study and Laloë & Hays, 2023). The inability for nesting phenology 
to counteract predicted changes in temperature and productivity is 
of concern.

Several studies, including this one, have predicted a reduction 
in hatchling production as temperatures increase, which would im-
pact population growth and stability (Laloë et al., 2017; Montero 
et al., 2019; Montero, Ceriani, et al., 2018;	 Santidrián	 Tomillo	
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et al., 2015). Furthermore, even though sea turtle populations are 
typically female bias (Hays et al., 2014), greater production of female 
hatchlings in relation to current rates (median female proportion 

across	 our	 study	 sites	 between	 2007	 and	 2020 ≈ 70%)	 may	 ulti-
mately	result	in	unbalanced	sex	ratios	of	breeding	adults	(Schwanz	
et al., 2010), which might alter reproductive dynamics, reducing 

F I G U R E  2 Current	(2007–2020)	
absolute mean incubation temperature, 
and future (2059–2100) incubation 
temperature across the whole incubation 
period under a middle of the road scenario 
(SSP5-48.5)	with	and	without	an	earlier	
phenological	shift	(26–43 days)	for	(a)	
loggerhead turtles (Caretta caretta), 
(b) green turtles (Chelonia mydas), (c) 
hawksbill turtles (Eretmochelys imbricata), 
(d) olive ridley (Lepidochelys olivacea).	AKY,	
Akyatan	beach,	Türkiye;	ALA,	Alagadi	
Beach,	Cyprus;	BAJ,	Bahía	de	Jiquilisco,	El	
Salvador;	BHN,	Bhanga	Nek,	South	Africa;	
BIA,	Bijagós	Archipelago,	Guinea-Bissau;	
BOR,	Boca	Raton,	Florida,	USA;	CAB,	
Cabuyal,	Costa	Rica;	CAS,	Las	Cabras,	
Mexico; CEL, Celestún, Mexico; CUY, El 
Cuyo,	Mexico;	DAT,	Dalyan	Turtle	Beach,	
Türkiye;	FUW,	Fuwairit,	Qatar;	MAJ,	
Majahuas,	Mexico;	MIN,	Minas,	Brazil;	
PRF,	Praia	do	Forte,	Brazil;	PRL,	Praia	do	
Leão,	Brazil;	RIC,	Rio	Caña,	Panama;	RIJ,	
Rio	de	Janeiro,	Brazil;	RUS,	Rushikulya,	
India;	TET,	Tetiaroa,	France;	TOR,	
Tortuguero,	Costa	Rica;	WAI,	Wassaw	
Island,	USA.
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the	 incidence	 of	 multiple	 paternity	 and	 fertilization	 rates,	 as	 well	
as resulting in loss of genetic variation (Booth et al., 2021; Fuller 
et al., 2013; Hays et al., 2023; Manning et al., 2015).	Feminization	

of populations may lead to demographic collapses (Mitchell & 
Janzen,	2010), although some evidence suggests that a shorter pe-
riod between breeding bouts in males and promiscuous breeding 

F I G U R E  3 Current	(2007–2020),	and	
future (2059–2100) hatching success 
projections under a middle of the road 
scenario	(SSP2-4.5)	with	and	without	an	
earlier	phenological	shift	(26–43 days)	for	
(a) loggerhead turtles (Caretta caretta), 
(b) green turtles (Chelonia mydas), (c) 
hawksbill turtles (Eretmochelys imbricata), 
and (d) olive ridley (Lepidochelys olivacea). 
Full charts indicating 100% hatching 
success	AKY,	Akyatan	beach,	Türkiye;	
ALA,	Alagadi	Beach,	Cyprus;	BAJ,	
Bahía de Jiquilisco, El Salvador; BHN, 
Bhanga	Nek,	South	Africa;	BIA,	Bijagós	
Archipelago,	Guinea-Bissau;	BOR,	Boca	
Raton,	Florida,	USA;	CAB,	Cabuyal,	Costa	
Rica;	CAS,	Las	Cabras,	Mexico;	CEL,	
Celestún, Mexico; CUY, El Cuyo, Mexico; 
DAT,	Dalyan	Turtle	Beach,	Türkiye;	FUW,	
Fuwairit,	Qatar;	MAJ,	Majahuas,	Mexico;	
MIN,	Minas,	Brazil;	PRF,	Praia	do	Forte,	
Brazil;	PRL,	Praia	do	Leão,	Brazil;	RIC,	Rio	
Caña,	Panama;	RIJ,	Rio	de	Janeiro,	Brazil;	
RUS,	Rushikulya,	India;	TET,	Tetiaroa,	
France;	TOR,	Tortuguero,	Costa	Rica;	
WAI,	Wassaw	Island,	USA.
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behavior may help balance operational sex ratios in warmer climates 
(Hays et al., 2023).	The	long-term	consequences	of	skewed	primary	
and adult sex ratios on population dynamics and the proportion of 

males required to sustain populations need to be fully understood 
for more robust assessments of the impacts of climate change on 
sea turtles (Boyle et al., 2014, 2016; Heppell et al., 2022). Similarly, 

F I G U R E  4 Current	(2007–2020),	and	
future (2059–2100) projections of female 
hatching production under a middle of 
the	road	scenario	(SSP2-4.5)	with	and	
without an earlier phenological shift 
(26–43 days)	for	(a)	loggerhead	turtles	
(Caretta caretta), (b) green turtles (Chelonia 
mydas), (c) hawksbill turtles (Eretmochelys 
imbricata), and (d) olive ridley (Lepidochelys 
olivacea). Full charts indicate 100% 
female	production.	AKY,	Akyatan	beach,	
Türkiye;	ALA,	Alagadi	Beach,	Cyprus;	
BAJ,	Bahía	de	Jiquilisco,	El	Salvador;	BHN,	
Bhanga	Nek,	South	Africa;	BIA,	Bijagós	
Archipelago,	Guinea-Bissau;	BOR,	Boca	
Raton,	Florida,	USA;	CAB,	Cabuyal,	Costa	
Rica;	CAS,	Las	Cabras,	Mexico;	CEL,	
Celestún, Mexico; CUY, El Cuyo, Mexico; 
DAT,	Dalyan	Turtle	Beach,	Türkiye;	
FUW,	Fuwairit,	Qatar;	MAJ,	Majahuas,	
Mexico;	MIN,	Minas,	Brazil;	PRF,	Praia	
do	Forte,	Brazil;	PRL,	Praia	do	Leão,	
Brazil;	RIC,	Rio	Caña,	Panama;	RIJ,	Rio	
de	Janeiro,	Brazil;	RUS,	Rushikulya,	India;	
TET,	Tetiaroa,	France;	TOR,	Tortuguero,	
Costa	Rica;	WAI,	Wassaw	Island,	USA.	To	
note estimation is not directly obtained 
from Figure 2, but rather derived from 
temperatures during the TSP.
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for studies that aim to predict future hatchling production, such as 
this one, lack of data on the relationship between constant tem-
peratures and hatching success remains problematic as well as lack 
of knowledge of how to integrate varying temperatures into con-
stant equivalent temperatures and a lack of understanding on met-
abolic heating and its contribution to hatching success (Gammon 
et al., 2020, 2021). Such data gaps hindered our ability to include 
leatherback (Dermochelys coriacea) and flatback (Natator depressus) 
turtles in our assessment. For these species, we lack hatching suc-
cess data below lower and above upper lethal temperatures (i.e., ~ 25	
and ~35°C, respectively, Howard et al., 2014) to properly estimate 
thermal tolerance limits from laboratory experiments although see 
Gammon et al. (2021).

It	 is	also	 important	to	consider	that	our	study	focuses	on	tem-
perature-driven	 hatching	 success	 whereas	 other	 environmental	
factors, such as precipitation and moisture have also been found 
to influence hatching success (Montero, Marcovaldi, et al., 2018; 
Rafferty et al., 2017). For instance, embryos can die from suffo-
cation if the nest is flooded from heavy rainfall for an extended 
period or from desiccation in the opposite case. Moreover, precip-
itation can cause incubation temperatures to drop via direct cool-
ing or evaporation (Lolavar & Wyneken, 2021;	Tezak	et	al.,	2018), 
which has resulted in the suggestion that nest watering could po-
tentially	 be	 used	 as	management	 strategy	 to	 reduce	heat-induced	
egg/hatchling mortality and to manipulate hatchling sex ratios (e.g., 
Gatto et al., 2023; Hill et al., 2015; Jourdan & Fuentes, 2015; Smith 
et al., 2021).	However,	human-assisted	cooling	of	nests	comes	with	
a series of costs and benefits. Costs include the persistent need of 
human resources if temperatures continue to increase and a poten-
tial slowdown of natural selection via the retention of deleterious 
alleles. Benefits include a demographical boost if rescued embryos 

make it to adulthood and reproduce as well as the maintenance of 
appropriate genetic mixing if primary sex ratios translate into an 
optimal balance between reproductive males and females (Patrício 
et al., 2021). Nevertheless, if managers decide to manipulate the 
incubation of eggs, it is crucial to evaluate the consequences and 
define a strategy that requires the least human resources. Based on 
controlled incubation experiments, Porter et al. (2021) mimicked the 
effect of heavy rainfall by dropping incubation temperatures for 3 
or	7 days	during	 the	 thermosensitive	period	 for	 sex	determination	
(TSP).	For	eggs	incubating	at	constant,	female-producing	tempera-
tures, the results suggest that short temperature drops below the 
pivotal temperature can be sufficient to trigger the development of 
males and that the sensitivity to these drops throughout the TSP 
varies	between	green	and	 loggerhead	turtles.	As	discussed	by	the	
authors, this can be useful to target when to cool down the nests in 
natural	conditions.	A	potential	research	avenue	would	be	to	refine	
the results presented in Patrício et al. (2021) by determining what 
would be the smallest drop in both temperature difference and du-
ration sufficient to reach a specific proportion of males at any given 
temperature throughout incubation.

Our	 sensitivity	 analysis	 suggests	 that	 hatching	 success	 predic-
tions for hawksbill turtles can differ when using data at the RMU 
level when compared to the species level, especially under the “mid-
dle	of	the	road”	(SSP2-4.5)	warming	scenario	(Figure S7). This likely 
reflects	a	lack	of	data	at	the	RMU	level	for	this	species.	Although	we	
did not detect substantial differences for olive ridley and loggerhead 
turtles, it is recommended to use hatching success and sex ratio data 
at the RMU level to account for local adaptation (or maladaptation) 
in thermal tolerances and pivotal temperatures. We encourage fur-
ther research to obtain such data to refine the results presented 
here and extend our assessment of adaptive capacity to other sites 
and species. Furthermore, other limitations must also be taken into 
consideration when interpreting our results. First, we forecast fu-
ture incubation temperatures based on a correlative model (i.e., via 
generalized	linear	models)	whereas	a	mechanistic	one	(i.e.,	based	on	
thermodynamics and biophysics principles) would be more appropri-
ate (Bentley et al., 2020). We found an overall good agreement be-
tween incubation temperature predictions and observations, except 
for some sites for which high temperatures are largely underesti-
mated (Figure S6). This is problematic when projecting warming im-
pacts	as	we	might	underestimate	exposure	to	female-producing	and	
lethal	temperatures.	On	the	other	hand,	a	mechanistic	microclimate	
model (e.g., NicheMapR; Kearney & Porter, 2017) requires extensive 
information on sand physical properties, beach topography, vege-
tation, and local weather, which makes it difficult to apply exten-
sively and globally (Fuentes & Porter, 2013). Second, we projected 
hatching success solely based on temperature, but future studies 
must integrate the combined effect of other climatic variables such 
as temperature and humidity, and consider uncertainties related to 
climate-driven	changes	in	these	variables.	Third,	we	predicted	clutch	
sex ratios using a recent, more sophisticated approach, namely the 
thermal	 reaction	 norm	 for	 sexualization	 (Monsinjon	 et	 al.,	 2022). 
However, this method requires extensive data on hatchling sex 

F I G U R E  5 Predicted	versus	observed	daily	mean	incubation	
temperatures (all study sites pooled together). The gray dashed 
line is the line of equality, and the red line shows the orthogonal 
regression.
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ratios under fluctuating temperature regimes and thus was applied 
so far only for loggerhead turtles nesting in Florida. Further research 
must be undertaken to investigate potential variations among spe-
cies and populations in the timing of the TSP and the sensitivity of 
sexualization.	Finally,	we	assumed	that	earlier	phenological	shifts	are	
driven by temperature at nesting sites, in which case turtles would 
be waiting for optimal conditions for nesting after their arrival, 
with higher temperatures speeding up egg maturation (Monsinjon, 
Lopez-Mendilaharsu,	et	al.,	2019; Pike, 2009; Schofield et al., 2009). 
However, sea turtle nesting phenology is yet to be fully understood 
as other studies suggest that the environmental cue turtles respond 
to might be sensed before their departure from foraging areas 
(Mazaris	et	al.,	2009;	Monsinjon,	Lopez-Mendilaharsu,	et	al.,	2019). 
We did not investigate this because the location of foraging areas 
connected to our nesting sites was unknown for most of the sites 
considered	here.	In	addition,	it	is	sometimes	unclear	whether	other	
factors are involved (e.g., demography) in observed phenologi-
cal	 shifts	 (Monsinjon,	 Lopez-Mendilaharsu,	 et	 al.,	 2019; Robinson 
et al., 2014), which makes it difficult to disentangle the effect of tem-
perature. We encourage further studies to finetune the calculation 
of expected phenological shifts, specifically for each nesting popula-
tion, by considering multiple factors (e.g., temperature, demography, 
migratory connectivity, and foraging habitat productivity).

Even though some work is still necessary to improve the spatio-
temporal scale of our results, and that some improvements can be 
potentially made with our modeling approach our study provides an-
other	step	toward	a	multi-species	evaluation	of	climate	change	im-
pacts on sea turtles' embryonic stage and sets the baseline for future 
research on this topic. For example, even though we only consid-
ered the influence of temperature on hatchling success, our results 
allow us to identify which sites might be more vulnerable/resilient 
to	changes	in	temperature	and	that	will	suffer	from	warming-related	
shortage of hatchlings (i.e., the sites potentially at risk from rising 
temperatures only), which is particularly relevant for ectothermic 
species like sea turtles. Ultimately, the broad geographic span of our 
study sites, and consideration of four of the seven species of sea 
turtles, indicate that the impacts of climate change and the ability of 
phenological	shifts	to	counteract	potential	feminization	of	sea	tur-
tles and decreases in hatching success will vary spatially and among 
species with some populations being unable to take advantage of 
phenological shifts, as previously indicated by similar studies (see 
Almpanidou	et	al.,	2018; Laloë & Hays, 2023; Monsinjon, Wyneken, 
et al., 2019).	Having	said	this,	we	identified	five	sites	(Wassaw	Island,	
USA,	Daylan	beach,	and	Akyatan	beach	in	turkey,	Alagadi	Beach	in	
Cyprus	and	Fuwairit,	Qatar)	in	which	a	maximum	phenological	shift	
will result in more males being produced than currently without a 
reduction in hatching success as observed at Las Cabras, Mexico. 
Ultimately, the impact of climate change on sea turtles and their re-
silience	to	it	will	depend	on	several	factors	such	as	population	size,	
genetic	 diversity,	 non-climate-related	 threats,	 foraging	 plasticity,	
the availability of climatically suitable habitat, and their capacity to 
adapt (Fuentes et al., 2013, 2020; Patrício et al., 2021). Here, we 
only considered the ability of sea turtles to adapt through shifts in 

nesting phenology, which alone will likely not be sufficient to coun-
teract the projected impacts of climate change on sea turtle repro-
duction	(Almpanidou	et	al.,	2018; Monsinjon, Wyneken, et al., 2019). 
It	might	be	that	several	other	processes	need	to	take	place	for	sea	
turtles	to	be	able	to	adapt	to	climate	change.	Other	behavioral	adap-
tations may include changes in the spatial distribution of sea turtle 
nesting	 sites,	 as	well	 as	 changes	 in	 their	 nest-site	 choice	on	nest-
ing beaches (Cardona et al., 2022; Girard et al., 2021; Hochscheid 
et al., 2022; Mancino et al., 2022; Tomillo et al., 2022). Since spatial 
and temporal adaptations may occur simultaneously (Chuine, 2010), 
future	studies	should	develop	a	multi-faceted	framework	to	explore	
the adaptive potential of sea turtles in response to contemporary 
climate	change.	It	is	also	important	to	consider	the	potential	implica-
tions of adaptations and, to the extent possible, account for known 
non-climate-related	 threats	which	will	 occur	 concurrently	 and	po-
tentially synergistically so that an adaptive management approach 
can be undertaken in impact assessments (Fuentes et al., 2016).

Shifts in nesting phenology may result in changes in the exposure 
of sea turtles to threats that have a seasonal nature (e.g., specific fisher-
ies, recreational activities). Similarly, shifts in nesting range may result 
in turtles being more exposed to other threats such as coastal devel-
opment and sea level rise (Fuentes et al., 2020). Clearly, there are sev-
eral interlinked factors affecting the ability of sea turtles to adapt and 
survive projected climate changes, highlighting the need for a better 
understanding of the cumulative and interacting nature of these fac-
tors in conjunction with animal behavior. While we address the current 
knowledge gaps, which hinder a more comprehensive understanding 
of the impacts of climate change on sea turtles (Patrício et al., 2021), 
there remains a need to enhance sea turtle resilience to climate change 
by mitigating other threats that they currently face (Brander, 2008; 
Fuentes et al., 2012). Such an approach will give vulnerable and de-
pleted populations greater resilience to resist these disturbances.
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