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a b s t r a c t

Although leatherback turtles (Dermochelys coriacea) are highly migratory and have a wide oceanic
distribution, the South West Atlantic (SWA) subpopulation comprises few reproductive females and is
listed as Critically Endangered. Herein, we present temporal genetic assessment of the poorly known
subpopulation of the D. coriacea from SWA subpopulation. A total of 39 leatherback adult individuals
were sampled during seven reproduction seasons along 160 km in the main nesting area in Brazil and
analysed using D-loop mtDNA sequences (N = 37) and 25 microsatellite loci (N = 29). We detected
genetic differences in temporal mtDNA analysis, possible explained by genetic drift. We also found two
different genetic clusters with admixture between them for SWA subpopulation, indicating possible
gene flow between different nesting areas. The SWA subpopulation presented low mean number of
different alleles, moderate levels of observed and expected heterozygosities and lack of inbreeding.
This pattern is possibly the consequence of an important amount of breeding occurrence abroad SWA
nesting beach adjacencies, mating behaviours (such as polyandry and/or polygyny), and also some
degree of inbreeding avoidance among reproductive individuals. The low remigration rates estimated
for SWA subpopulation is possibly related to the high mortality rates at seas. A more comprehensive
analysis on the patterns of genetic diversity, operational sex ratios, and inbreeding avoidance could
help to inform about population resiliency and better understand the reproductive behaviour to
perform recovery strategies and efficiently act to prevent the extinction of this isolated and remarkably
threatened leatherback subpopulation from the Atlantic Ocean.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

The leatherback turtles (Dermochelys coriacea) are among
the most threatened turtle species in the world. Although be-
ing highly migratory and presenting a wide oceanic distribu-
tion, the South West Atlantic (SWA) subpopulation of D. coriacea
comprises few reproductive females and is listed as Critically
Endangered by IUCN (Tiwari et al., 2013) and by the Brazil-
ian Minister of the Environment (MMA/ICMBio-Brazil) (Almeida
et al., 2018). The only regular nesting area for this subpopulation
is in south-eastern Brazil around the Doce River mouth. Although
an increasing but variable trend in the annual number of nests
has been showed, only 143 nesting females have been recorded
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or this subpopulation from 1989 to 2017 (Colman et al., 2019).
urthermore, females have high levels of site fidelity to a beach
r region (a behaviour known as natal philopatry), and distinct
enetic signatures of populations (Dutton et al., 2013; Reid et al.,
019).
Population genetic studies have been characterized the genetic

iversity of the SWA leatherback turtle subpopulation and the
rigin of the individuals found along the Brazilian coast, using the
ontrol region of the mitochondrial DNA (mtDNA) (Dutton et al.,
999, 2013; Vargas et al., 2008, 2019). The genetic diversity of
he SWA subpopulation was similar to the other larger Atlantic
opulations (e.g.: Guiana and Trinidad — (Dutton et al., 2013), but
he current interpretation associated with the genetic diversity
esulted from these studies using only mtDNA are incomplete
nd may be biased depending if hatchlings were also used to
stimate genetic diversity parameters. Thus, several studies have
een implementing analysis with biparental inherited molecular
arkers such as microsatellites (Short Tandem Repeats, STR’s) to

mprove the resolution of the diversity estimates and to produce
elevant information about mating systems (Lasala et al., 2018),
inship (Blouin, 2003; Levasseur, 2019), inbreeding (Phillips et al.,
017), the origin of turtles caught as bycatch (Stewart et al.,
016), genetic fingerprinting (genetic-ID; (Roden et al., 2017))
nd reproductive success (Yuan et al., 2019). Until now, only
ne study used STR’s to evaluate the genetic structure among
ubpopulations along the Atlantic Ocean, showing that the SWA
ubpopulation is genetically isolated from the others Northern,
entral, and Eastern Atlantic subpopulations (Dutton et al., 2013).
ut the genetic diversity of the SWA subpopulation based on
TR’s was not discussed; neither additional genetic fingerprinting
valuation was performed.
In Brazil, monitoring and capture–mark–recapture programmes

hroughout the reproductive seasons are based on the identi-
ication of individual nesting females during oviposition with
xternal flipper iconel tags (Colman et al., 2019). However, there
re high rates of external flipper tag loss in the leatherback
urtles (Witt et al., 2011; Garner et al., 2017; Hart et al., 2021),
ampering the identification and estimation of the remigration
ates for females (6.3% — (Colman et al., 2019)). In fact, there is
chance that a nesting female caught without tags might not
e a new verified female (new recruit), but a remigrant that
ost her tag (Santidrián Tomillo et al., 2007). Thus, the genetic
ingerprinting (genetic-ID) using STR’s is a very powerful tool
o complement the individual’s identification during fieldwork
Roden et al., 2017). This molecular approach allows the identifi-
ation of remigrant females by finding duplicate genotypes within
enetic databases and can also be used to indirectly estimate the
ge of maturity for marine turtles (Dutton et al., 2005).
There is a knowledge gap about the temporal distributions of

eatherbacks turtles in the SWA, the genetic diversity and the
enetic structure of this population are not well understood. Thus,
his study aims to: (1) use a molecular identification method
genetic fingerprint) to implement a complementary technique
or individual identification (genetic-ID); (2) estimate the genetic
iversity and structure using biparental inherited microsatellites
STR’s) loci, compare with mtDNA data and with studies from
ther Atlantic subpopulations; (3) estimate effective population
ize, and (4) tentatively remigration rates.

. Material and methods

.1. Ethic statement

The research was conducted in Brazil and specimens were
ampled and manipulated minimizing animal suffering when ob-
aining a tissue sample for genetic analyses. Sampling was con-
ucted by Fundação Projeto Tamar under SISBIO licences num-
ers #42760, and #65543-8. The collected tissues were deposited
2

in the Scientific collection of Laboratório de Genética e Evolução
Molecular of the Universidade Federal do Espírito Santo under a
specific code for each sample (Table S1).

2.2. Study area

The studied area comprises more than 150 km of the northern
coast of the state of the Espírito Santo in Brazil (Fig. 1). This
area has been recognized as the only regular nesting hotspot of
D. coriacea in Brazil (Almeida et al., 2018) based on historical
monitoring of females and nests by Projeto TAMAR since 1982
(Baptistotte et al., 2003) with a discreet increasing number of
females over the years (Colman et al., 2019).

2.3. Sampling

During seven reproductive seasons (2004/05, 2008/09, 2009/
10, 2011/12, 2018/19, 2019/20 and 2020/21 - Table S1), occurring
annually between October and March, females were spotted dur-
ing night monitoring after leaving the ocean to nest, especially
along the Povoação and Regência beaches, but also northward
until Itaúnas, Espírito Santo State (Fig. 1). Once oviposition was
complete and while the turtle was covering her nest, we collected
tissue samples from the proximal region of the females’ anterior
flipper with 6 mm punches and stored them in 95% alcohol
tubes. Carapace measurements of each female were taken (Bolten,
1999), including curved carapace length (CCL), and flipper tags
were newly placed or recorded in the case of remigrant. Occa-
sional samples of animals found dead at the beach were also
collected using scalpel and stored in 95% alcohol tubes (Table
S1). A total of 39 samples were collected, including four dead
males, two dead females, and 33 nesting females. Three out of
35 females were remigrants and all others were identified for
the first time, with CCL ranging from 132 to 179.5 cm (Table
S1). The number of females sampled for this study (N = 35)
represents more than 20% of the total females tagged by Fundação
Projeto TAMAR since 1999 (N = 172 — Fundação Projeto TAMAR
personal communication) and our recent set of samples (animals
sampled within the last three seasons studied) corresponds to
100% of the females tagged in 2018/19, 2019/20 and 2020/21
seasons.

2.4. Sequencing and genotyping

Genomic DNA (gDNA) was isolated from the tissues using the
DNA salt extraction protocol (SDS/NaCl/Proteinase K) described
by Bruford et al. (1992). To verify the conditions of the gDNA ob-
tained, a subset was stained with Blue Green

®
dye (LGC Biotech-

nology) and visualized on 1% agarose gel under ultraviolet light.
The extracted gDNA was further quantified in NanoDropND-100
spectrophotometer (Thermo Scientific) and concentration was
standardized in 50 ng/µl.

The amplification of the mitochondrial control region (D-loop)
was performed using the primers LCM 15382 and H950 (Abreu-
Grobois et al., 2006), and HDCM1 (Allard et al., 1994). Polymerase
chain reactions (PCRs) were performed as described by Vargas
et al. (2019) and PCR products were processed and sequenced as
previously described by Lara-Ruiz et al. (2006). D-loop sequences
were checked for quality, then assembled and a consensus was
generated using the software Geneious R11.1.5 (Kearse et al.,
2012). The consensus sequences were aligned using the MUSCLE
algorithm implemented in Geneious.

We also amplified 25 STR’s loci: C102, D1 (Dutton and Frey,
2009), DERM05, DERM10, DERM11, DERM15, DERM18, DERM22,
DERM32, DERM37, DERM38, DERM39, DERM43, DERM48 (Alstad
et al., 2011) and 14-5, LB99, LB110, LB123, LB125, LB128, LB133,
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Table 1
Genetic diversity of mitochondrial DNA of Dermochelys coriacea of the South West Atlantic subpopulation, and comparison with
previous study.
D-loop N Haplotypes (f) H h (SD) π (SD) References

1992/93–2003/04 23 Dc1.1 (9)
Dc3.1 (14)

2 0.498 (0.053) 0.0032 (0.002) Dutton et al. (2013)

2004/05–2020/21* 33 Dc1.1 (22)
Dc3.1 (9)
Dc13.1 (2)

3 0.492 (0.075) 0.0029 (0.0018) Vargas et al. (2019)
and this study

1992/93–2020/21 56 Dc1.1 (31)
Dc3.1 (23)
Dc13.1 (2)

3 0.533 (0.0317) 0.0039 (0.0023) Overall

N: sampling number; (f): frequency of haplotypes; H: number of haplotypes; h: haplotype diversity; SD: standard deviation; π :
nucleotide diversity; * dataset considering only females.
Fig. 1. (A) Locations along the coast of state of Espírito Santo, Brazil, where leatherback marine turtles monitoring was carried out and samples were collected between
004/05 and 2020/21 nesting seasons, (B) mtDNA D-loop haplotypes frequencies found for two different periods: from 1992/93 to 2003/04 (N = 23 - Dutton et al.
2013)) and from 2004/05 to 2020/21 nesting seasons (N = 33 — Vargas et al. (2019) and this study) . (C) Haplotype network showing the relationships among the
hree haplotypes found for the SWA subpopulation and their frequencies reported in the two periods: white for 1992/93 to 2003/04 — Dutton et al. (2013) and
lack for 2004/05 to 2020/21 nesting seasons — Vargas et al. (2019) and this study. See Table 1 and Table S1 for details. *Only females’ samples were considered.
v
c
f

B141, LB142, LB145, LB157 (Roden and Dutton, 2011) (Supple-
entary Table S2). These 25 markers have similar fragment sizes,
o five different fluorescent markers were used to differentiate
etween markers during peak analysis (Supplementary Table S2).
CRs were conducted individually for each locus in a total vol-
me of 12.5 µl, including 1x buffer (200 mM Tris HCl (pH 8.4),
00 mM KCl) Invitrogen

®
, 1.5 mM MgCl2 Invitrogen

®
, 0.2 mM

NTPs, 0.16 µM for each primer (forward and reverse), 0.16
M fluorescent marker, 0.5 U of Taq platinum Invitrogen

®
and

µl of DNA (50 ng/µl). The PCR products were genotyped in
ultiplex reactions (two to five different PCRs products in each
ultiplex — Supplementary Table S2) using a mix containing
.0 µl of formamide, 0.5 µl fluorescent molecular Size Standard,
nd 0.5 µl of the amplified products of each of the five mark-
rs were prepared and separated by electrophoresis with ABI
ris 3700 Automatic Sequencer (Thermo Fisher Scientific) using
eneScan ™ 600 LIZ ™ Size Standard v2.0 (Applied Biosystems©).
he amplified microsatellite loci were visualized, and their alleles
ere scored and measured using Geneious.
3

2.5. Mitochondrial haplotype assignment, genetic diversity and tem-
poral genetic structure

Individual mtDNA haplotypes were assigned using DnaSP v.6
(Rozas et al., 2017), comparing the newly obtained sequences
with haplotypes from previous studies (Dutton et al., 2013; Var-
gas et al., 2019).

We estimated mtDNA haplotype (h) and nucleotide (π ) di-
ersities using the software Arlequin 3.5.2. (Excoffier and Lis-
her 2015). Only females were used to estimate genetic diversity
or samples collected after 2003/04 nesting season. Pairwise F ST
comparisons were conducted to test temporal genetic structure.
For this we considered three datasets: samples collected be-
tween 1992/93 and 2003/04 nesting seasons (Dutton et al., 2013),
female’s samples collected between bet 2004/05 and 2020/21
nesting seasons (this study) and the compiled dataset including
samples collected along the 28 years’ period. A haplotype net-
work was built based on mutation steps to evaluate haplotype
relationships, using the Median Joining algorithm implemented
in the Network (Bandelt et al., 1999).
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The haplotype diversity of the SWA population of D. coriacea
as compared with previous studies of this species and other sea
urtle species (see Supplementary Table S3).

Genetic identification using nuclear data
To avoid pseudoreplication owing to individuals that may have

ost their tag, we checked for identical genotypes in GenAlex 6.5
Peakall and Smouse, 2012). Remigrants, i.e., the same individ-
al captured in different nesting seasons, were only considered
nce for the subsequent analysis. The probability of identity (PI),
.e., the likelihood that two unrelated random samples will have
he exact genotype, and the probability of exclusion (PE), i.e., the
roportion of the population that has a genotype that contains at
east one allele not present in the mixed profile, were estimated
sing GenAlex 6.5 (Peakall and Smouse, 2012).
Microsatellite diversity, structure and effective population size
The 25 STR’s dataset was evaluated for deviations from Hardy–
einberg equilibrium (HWE) using GenAlex 6.5 (Peakall and

mouse, 2012), and loci with significant departure from expecta-
ions after Bonferroni correction were excluded from the subse-
uent analysis. The R package PopGenReport was used to analyse
he presence of null alleles (Ihaka and Gentleman, 1996), Pop-
enReport — (Gruber and Adamack, 2015). The linkage disequi-
ibrium (LD) between pairs of loci was calculated using Arlequin
.5 (Excoffier and Lischer, 2010).
Genetic diversity based on females only, including the ob-

erved (HO) and expected heterozygosity (HE), mean number
f effective alleles (Ne), fixation index (F), and private alleles
PA) was estimated using the GenAlex 6.5 (Peakall and Smouse,
012). Inbreeding coefficient (FIS) was estimated using Arlequin
.5 (Excoffier and Lischer, 2010).
Mean values of genetic diversity of the D. coriacea SWA sub-

population, from other subpopulations of this species and other
sea turtle species are shown in Supplementary Table S3. As the
set of nuclear loci used in each of these studies are different, we
suggest caution in direct comparisons among them.

Population structure was evaluated using Bayesian clustering
approach implemented in Structure 2.3.4 (Falush et al., 2003).
Analyses implemented in Structure were performed indepen-
dently 10 times for 106 iterations after a burn-in period of 5 × 105

iterations, using the admixture model with correlated allele fre-
quencies among populations. We tested 1 to 6 clusters (K) with-
out prior population information. Structure Harvester (Earl and
VonHoldt, 2012) was used to summarize the posterior proba-
bilities of each K over all runs (Evanno et al., 2005). CLUMPAK
(Kopelman et al., 2015) was used to summarize and graphically
represent the results of Structure.

Population structure was also explored using Discriminant
Analysis of Principal Components (DAPC). K-means clustering of
principal components for K = 1 to K = 6 and Bayesian Infor-
mation Criteria (BICs) were used to assess the optimal number
of genetic clusters. The value of K with the lowest BIC value
was considered optimal. DAPC was applied using the Adegenet
package 2.1.6 in R (Jombart, 2008)

Effective female population size was estimated following the
Linkage DisequilibriumMethod implemented in NeEstimator v2.1
(Do et al., 2014) with a threshold allele frequency of 0.02 for
screening out rare alleles, assuming random mating and cal-
culating 95% confidence interval by a Jackknife-across-samples
methods (Jones et al., 2016). Only adult females were used in this
analysis.

3. Results

3.1. Genetic-ID and remigration

We successfully genotyped STR’s for 29 females and 1 male,
corresponding to 30 individual genotypes (Supplementary Table
S1).
4

The probability of identity test (PI) showed that the set of
microsatellite markers used in this study was highly sensitive for
sample individualization. The combined probability of identity for
the 22 loci analysed (please see below information on the curated
dataset) was extremally low (PI: 2.8 ×10−20) and probability of
exclusion was high (PE = 1.0). We did not identify clones (samples
with identical multilocus genotype - MLG) among samples, show-
ing that there are no duplicates among the individuals collected
for the studied seasons (Supplementary Table S1).

We identified three remigrant females: R0647 firstly detected
in 2006 and then in 2008; R0651 detected in 2006 and 2009; and
SMV285 detected in 2013 and 2018 (Supplementary Table S1).
According to our current genetic database, there is no evidence
of more than those three remigrants found by the capture–mark–
recapture programme of the Fundação Projeto TAMAR during the
seven studied seasons, because no clones (duplicates) were found
among the analysed samples using STR’s (Supplementary Table
S1).

Genetic diversity
We successfully obtained 37 mtDNA sequences (33 from fe-

males and 4 from males), corresponding to three D-loop haplo-
types previously identified for the D. coriacea (Dutton et al., 2013).
The haplotype Dc1.1 was the most frequent (24 individuals —
64.86%), followed by haplotypes Dc3.1 (11 individuals — 29.73%)
and Dc13.1 (2 individuals — 5.40%) (Supplementary Table S1).
Considering only female samples, the haplotype and nucleotide
diversities observed were similar to other study of D. coriacea, but
there was an inversion in the most frequent haplotype found for
both studies (Dutton et al., 2013) — Table 1). The Dc1.1 haplotype
diverged from Dc3.1 by five steps (Fig. 1. The Dc13.1 diverged
by only one mutation step from Dc1.1 and was detected in one
remigrant female (R0651) and one female from 2019 (SMV718)
(Supplementary Table S1).

Three out of 25 loci showed deviation from HWE after Bon-
ferroni correction (Supplementary Table S2), and were removed
from the subsequent analysis. No loci showed excess of null
alleles and no significant deviations from LD were observed for
any pair of loci. Further analysis were performed with a dataset
of 22 loci (Table 2). All STR’s loci were polymorphic, with a total
of 146 alleles among all 22 loci, with the mean number of alleles
per locus of 6.636, ranging from 3 (loci LB141, LB157, LB123, C102
and DERM15) to 14 (locus D1), and maximum of 16% of missing
data (2 out of 22 loci).

The SWA leatherback subpopulation showed an observed and
expected heterozygosities of 0.661 (standard error, SE, 0.049) and
0.650 (SE = 0.044), respectively, and 12 loci showed an excess of
heterozygosity (Ho > He) consequently showing negative values
of fixation index (Table S2). But no evidence of inbreeding for the
overall subpopulation is record (FIS = 0.001, p = 0.44).

Genetic structure and effective population size
Pairwise FST considering the samples collected between 1992/9

and 2003/04 (Dutton et al., 2013) and female’s samples col-
lected between 2004/05 and 2020/21 nesting seasons (Vargas
et al. (2019) and this study) showed significant differences (FST
= 0.1361, p = 0.009), but pairwise comparisons between samples
collected previously and from Vargas et al. (2019) plus this study,
with the compiled dataset showed nonsignificant differences (FST
= 0.0321 and 0.0072; p > 0.05, respectively).

Nuclear DNA supports two genetic clusters (k = 2) for the
SWA leatherback subpopulation, following multiple approaches
(Fig. 2). Twenty-two adult individuals (73.3%) belong to the most
common cluster (cluster 1), including the male SMV2698 col-
lected in 2020 (Fig. 2B), six (20%) belong to the other cluster
(cluster 2), and two individuals (6.6%) showed admixture be-
tween both clusters (Fig. 2B), including one individual (SMV718)
bearing the Dc13.1 haplotype exclusively found previously only in
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Table 2
Genetic diversity of nuclear DNA of the South West Atlantic Dermochelys coriacea subpopulation
sampled during the nesting seasons of 2004/05, 2018/19, 2019/20 and 2020/21, considering the
curated dataset with 22 microsatellites loci (see Table S2 for details).

N Na Ne Pa Ho He F

2004/05 2 2.18 2.000 3 0.659 0.415 −0.584
2018/19 7 4.32 3.432 14 0.624 0.601 −0.012
2019/20 6 4.41 3.217 12 0.698 0.605 −0.166
2020/21 14 5.00 3.767 19 0.667 0.634 −0.052
2020/21* 15 5.09 3.783 20 0.636 0.658 −0.028

Overall females 29 6.59 4.001 NA 0.669 0.649 −0.029

Overall adults* 30 6.64 4.035 NA 0.650 0.661 −0.016

* Male data included. N: sampling number; Na: mean number of different alleles; Ne: mean number
of effective alleles; Pa: number of private alleles; Ho: mean observed heterozygosity; He: mean
expected heterozygosity; F: mean number of fixation index. NA: not available.
Fig. 2. (A) Plot of Delta K as summarized through Structure Harvester for K ranging from 1 to 6, supporting the model of two genetic clusters as indicated by the
maximum value of Delta K. (B) Plot bars showing assignment of adults Southwest Atlantic Dermochelys coriacea based on a Bayesian clustering analysis performed
sing an Admixture Model assuming K = 2. Vertical bars represent individuals sampled between 2004/05 and 2020/21 nesting seasons, individuals are grouped
ccording to their sampling date, and colours within each bar correspond to the two genetic clusters. (C) Plot of Bayesian Information Criterion (BIC) for K ranging
rom 1 to 6 as obtained through adegenet, supporting the model of two genetic clusters as indicated by the lowest BIC value. (D) Density plot of Discriminant
nalysis of Principal Components (DAPC) highlighting clustering among 30 individuals, assuming K = 2 and using the first discriminant function.
frican nesting locations. Assignment probabilities of individuals
rom cluster 1 averaged 0.98 and from cluster 2 averaged 0.97.
he DAPC clustering analysis showed similar results to the Struc-
ure analysis, although no overlap between clusters is observed
Fig. 2C and D). Admixed individuals are assigned to cluster 2 in
he DAPC analysis.

The effective female population size estimated for SWA leath-
rback turtles is 27.5 (95% CI = 16.5–57.8).

. Discussion

The SWA leatherback subpopulation is poorly known, with
ew studies evaluating their genetic diversity and population
tructure solely based on mtDNA data (e.g. Dutton et al., 1999,
013; Vargas et al., 2008, 2013, 2019), and only one with STR’s
Dutton et al., 2013). Therefore, our multi-year evaluation using
5

both inheritance data (mtDNA and STR’s) for the leatherback
females of 2004, 2018, 2019 and 2020 allowed us to determine
low diversity, some degree of genetic structure, low remigration
rates and a putative male philopatry for this subpopulation.

Our results show that the set of molecular markers chosen was
highly effective to identify individuals and monitor the long-term
genetic diversity of the SWA critically endangered leatherback
subpopulation. The combined probability of identity (2.8 × 10−20)
found for SWA leatherbacks was higher than other studies per-
formed for critically endangered marine turtles (i.e., Levausser
2019) and reflects the power of our genetic data set to be used
as auxiliary tools for long-term fieldwork, ecological, and moni-
toring studies.

For mtDNA, the SWA leatherback subpopulation has one of
the highest values of genetic diversity among the subpopulations
from the Atlantic Ocean (Dutton et al., 2013; Vargas et al., 2019).
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ikewise, the genetic diversity found in this study is similar to
he values found for larger Atlantic populations, such as Trinidad
nd Gabon (Dutton et al., 2013); Supplementary Table S3) and
uch higher than for other small and isolated populations as
ominica Republic (Carreras et al., 2013); Supplementary Table
3) and South Africa ((Dutton et al., 2013); Supplementary Table
3). The haplotype diversity of leatherback subpopulation is also
imilar to other endangered species from the Brazilian coast, such
s C. caretta (Ludwig et al. submitted; Supplementary Table S3).
The most frequent haplotype found in the SWA subpopula-

ion was Dc1.1, followed by the Dc3.1 and Dc13.1 (Table 1).
he Dc13.1 was previously found only in African nesting sites
rom Gabon and Ghana and was not found in Brazilian nest-
ng area beforehand (Dutton et al., 2013). Our results contrast
ith previous study of this subpopulation that did not recov-
red Dc13.1 haplotype and found different haplotype frequencies
Dutton et al., 2013). In the absence of a minimum number of
esting female samples (about N = 15), samples of hatchlings
nd embryos (randomly collected) were considered to calculate
he diversity values (Dutton et al., 2013), which may be reflecting
his contrasting result. This practice is very common in studies
egarding endangered species like freshwater turtle (Erickson
t al., 2015; Viana et al., 2017; Oliveira et al., 2019); consequently,
n some cases it could bias the results, especially when the in-
ormation regarding the relatedness of the individuals is scarce.
nother possibility to explain this temporal shift in haplotypes
requencies and consequently genetic differences between the
wo subsets of samples is the genetic drift. As the populations
ize for SWA leatherback subpopulation is small and the period
ampled was long (28 years), genetic drift might have played a
ole in the genetic differentiation found when the two periods
from 1992/93 to 2003/04 and from 2004/05 and 2020/21) were
ompared. This finding gives an important message to the marine
iologist in dealing with datasets from multiple years: genetic
ifferences along years can be hidden in compiled datasets, and
verall genetic diversity and structure values may not reflect
ecent scenarios, especially for populations with small population
izes, that are more influenced by genetic drift (Frankham et al.,
010).
We found low mean number of different alleles and mod-

rate levels of observed and expected heterozygosity for the
eatherback turtle SWA subpopulation, which is expected for a
opulation with small size (Frankham et al., 2010). Notwithstand-
ng the increasing trend in the annual number of nests between
990 and 2015 (ranging from 25.6 nests in 1988–1992 to 89.8
n 2013–2017) and the increasing numbers of females nesting
er year (between 15 and 18) (Colman et al., 2019), the SWA
ubpopulation has the lowest number of nests and females when
omparing with others subpopulations from the North Atlantic
Colman et al., 2019; Dutton et al., 2005).

No inbreeding was detected for the leatherbacks females from
WA subpopulation, which might be associated with broad mi-
ratory behaviour of the species (Fossette et al., 2014), enabling
inding a reproductive partner from different population sources
nd also with the small effective populations size (as shown by
ur results of effective female population size and by (Colman
t al., 2019), reducing the chances of encounters among males
nd females from the same SWA source subpopulation. Mating
trategies like polyandry (Lasala et al., 2018), and/or inbreeding
voidance already reported for the endangered gopher tortoise
Yuan et al., 2019) can also be accounted to explain negative
nbreeding coefficient values.

Although we detected population structure using D-loop
tDNA only when comparing the two subsets of samples col-

ected along the 28-year period, nuclear data supports two clus-

ers with admixture between them within the more recent subset s

6

f samples (collected from 2004/05 to 2020/21). While tenta-
ively, this structure may reflect different family lineages and/or
ifferent genetic pools contributing to the differentiation of the
WA leatherback subpopulation. In one side, our dataset is possi-
ly comprised by related individuals and this may inflate k values
Pritchard et al., 2000). But on the other side, behaviour patterns
ay also explain the observed genetic structure. Tag, telemetry
nd genetic studies have been showing migration patterns of
ndividuals from African nesting locations to the Brazilian waters,
r contrariwise (Almeida et al., 2014; Billes et al., 2006; Fossette
t al., 2014; Vargas et al., 2019). This behaviour agrees with
he evidence of two genetic clusters among SWA leatherbacks,
ncluding the presence of two admixed females, one bearing the
c13.1 haplotype (SMV718), previously found only in Gabon and
hana, Africa (Dutton et al., 2013). Samples from African nesting
ites and more samples of SWA females are needed to further
nvestigate these hypotheses.

Furthermore, the low rate of remigrants observed in the SWA
eatherback turtles may be associated with high levels of fisheries
ressures and bycatch, both in Brazilian (Fiedler et al., 2012) and
nternational waters (Shamblin et al., 2014; Sales et al., 2008).
here is some evidence showing that leatherbacks migrate from
razilian nesting beaches to Africa, especially towards some areas
ear the coastline of Namíbia and Angola (Almeida et al., 2011,
014). During these migrations the leatherback turtles are po-
entially exposed to areas with strong longline fishing pressure,
s highlighted for some authors (Honig et al., 2008; Fossette
t al., 2014), increasing the probability to be caught. Thus, the
WA subpopulation is categorized as highly bycatch by global
tudies (Wallace et al., 2010, 2013), demanding urgent conser-
ation actions, mainly towards the reduction of fishing bycatch.
n addition, at the Brazilian coast, particularly at the Espírito
anto coast, anthropic actions such as interaction with fisheries,
hotopollution, and habitat loss have also been threatened this
opulation (Magris et al., 2019). Furthermore, the extreme habitat
egradation caused by the Fundão mining dam, which occurred
n November 2015 in the city of Mariana, Minas Gerais (Marta-
lmeida et al., 2016), could also affect the leatherback turtles in
hose areas, and consequently impact the population size of this
hreatened species. Thus, the loss of genetic health and conse-
uently reduction of population size could prompt the species to
n extinction vortex (Frankham et al., 2010).
Finally, the occurrence of one dead male in the beginning of

he 2020/21 nesting season belonging to the same genetic cluster
f the SWA females from 2020, raise important questions: Is the
hylopatric behaviour a rule or an exception for SWA leatherback
ales? Did this male contribute to this reproductive season? But
dditional male and hatchling samples are need to answer these
uestions.

. Conclusions

Overall, this genetic dataset is useful to better understand
he current remigration rates and the origin of individuals from
eeding areas or stranded and to improve conservation actions
or the SWA subpopulation. This will aid the continuous moni-
oring programme and conservation actions running since 1980’s
the Projeto TAMAR — The Brazilian Sea Turtle Conservation
rogramme) along leatherback turtles main nesting area in the
razilian coast (Thomé et al., 2007; Colman et al., 2019). With
ontinuing sampling and genotyping efforts to update this molec-
lar database, in the near future, even if one female were found
ithout flipper tags, we will be able to know if she is a remigrant
r a recruit. This methodology is a great asset to better under-
tand the remigration rates because flipper tag loss is common
mong leatherbacks (Garner et al., 2017), and particularly in the
tudy area this loss is sometimes reported.
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A more comprehensive analysis about the patterns of genetic
iversity for both genders (indirect for breeder’s males and direct
or females), operational sex ratios, relatedness, inbreeding avoid-
nce and reproductive fitness will help us to better understand
he population resiliency, their reproductive behaviour and the
ffspring quality to effectively act to prevent the extinction of this
hreatened and isolated subpopulation from the Atlantic Ocean.
ence, the assessment of genetic diversity patterns becomes es-
ential to guide biodiversity conservation policies, particularly
or threatened species. For the SWA leatherback subpopulation,
he implementation of in water conservation and the follow-
ng surveillance of the on-going management actions must be
trengthened, otherwise, more than four decades of females and
ests protection, environmental education, and other local com-
unity conservation actions might be counterweighted by the
eceased of adult individuals in open seas.
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