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Noronha would need to spend ca. 22 years to grow from 
30 to 87 cm CCL and even longer to reach minimum adult 
breeding size. A Cormack–Jolly–Seber model was used to 
estimate the apparent survival of the residents and recap-
ture probabilities (2001–2012). The estimated annual 
abundance ranged from 420 to 1,148 individuals. Confi-
dence around abundance estimates was low, and there was 
no significant trend over the period, despite steep recent 
increases at the major source rookery. Slow growth and 
stable stocking numbers may be suggestive of density-
dependent regulation having taken place following ini-
tial population recovery that occurred prior to the current 
study.

Introduction

Management for the effective recovery of species of con-
servation concern depends on the knowledge of several 
demographic parameters, including recruitment, growth 
rates, survival probabilities and abundance (Lotze et al. 
2011; Mills 2013). Long-term studies are key to inform-
ing these parameters and essential in assessing the status of 
populations and evaluating the effectiveness of conserva-
tion efforts (Brook et al. 2000; Magurran et al. 2010). In 
marine habitats, air-breathing vertebrates such as marine 
mammals, marine reptiles and fishes, such as tunas and 
sharks, are of particular concern, as they are typically slow 
growing, have late maturation and low reproductive capac-
ity (Clapham et al. 1999; Musick et al. 2000; Bolten 2003; 
Fromentin and Powers 2005; Scott et al. 2012). This leads, 
consequently, to slow recovery rates and low resilience to 
disturbance such as direct (Jackson et al. 2001; Baum et al. 
2003) or incidental take (Lewison et al. 2004; Zydelis et al. 
2008; Soykan et al. 2008), highlighting the need for robust 

Abstract For effective management of species of con-
servation concern, knowledge of life history parameters is 
essential. Here, we present the results of one of the long-
est ongoing capture-mark-recapture studies of juvenile 
green turtles (Chelonia mydas) worldwide. From 1988 to 
2013, 1,279 individual turtles were tagged in Fernando de 
Noronha, Brazil (3°51′S, 32°25′W). The size distribution 
at first capture varied between 27 and 87 cm (mean ± SD 
47.9 ± 11.3 cm) curved carapace length (CCL). Median 
residence time was 2.4 year (with long-term residence 
of up to 11.2 year), with individuals exhibiting some site 
fidelity within the Archipelago. Turtles at this site are 
slow growing (mean 2.6 ± 1.6 cm year−1; range −0.9 to 
7.9 cm year−1; n = 1,022), with a non-monotonic expected 
growth rate function and a peak in growth rates occurring 
at 50–60 cm CCL. At these rates, turtles in Fernando de 
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population models accounting for life stages to assess pop-
ulation sizes and trends in abundance.

Marine turtles are long-lived and slow-growing verte-
brates that, although showing some diversity in develop-
mental patterns, are believed to reach the open ocean as 
hatchlings after emerging from their nests, spending their 
first few years in an oceanic phase (Bolten 2003). The oce-
anic phase is thought to last ca. 3–5 years in the Greater 
Caribbean (Bjorndal et al. 2005; Reich et al. 2007; Goshe 
et al. 2010). As juveniles (ca. 20–35 cm carapace length), 
they recruit to one or a series of neritic foraging areas 
(Bolten 2003; Bjorndal et al. 2005) used as developmen-
tal habitats. They can remain within these areas for several 
years (Bjorndal et al. 2005) until reaching maturity, when 
they start periodic migrations between foraging areas, 
breeding grounds and nesting beaches (Bowen and Karl 
2007; Arthur et al. 2008).

The green turtle (Chelonia mydas) has a pantropi-
cal distribution with regional population substructuring 
(Bowen et al. 1992). With a long history of overexploita-
tion (Chaloupka et al. 2008), many green turtle populations 
are considered relictual (McClenachan et al. 2006). How-
ever, as a result of conservation efforts, the recovery of a 
number of populations has been observed (Broderick et al. 
2006; Chaloupka et al. 2008). In this context, studies that 
provide information on demographic parameters for the 
different regional green turtle populations are highly valu-
able, as they contribute to our understanding of population 
dynamics and improve our capacity for managing sea tur-
tle populations, e.g. in the light of ongoing direct (Humber 
et al. 2014) or incidental take (Alfaro-Shigueto et al. 2011).

In such a long-lived marine species, with life history 
traits such as wide-ranging dispersal and slow growth, 
unravelling population dynamics is complex and research 
has focused mainly on breeding adults on nesting beaches 
(Bjorndal 1999; Bjorndal et al. 2005). Although there has 
been relatively little research about juveniles, parameters 
such as growth rates have been estimated for green tur-
tle populations in the western Atlantic (Mendonça 1981; 
Bjorndal and Bolten 1988; Boulon and Frazer 1990; 
Collazo et al. 1992; Bjorndal et al. 2000; Kubis et al. 2009; 
Torezani et al. 2010; Patrício et al. 2014), and less com-
monly, survival probabilities have been estimated in the 
Caribbean (Bjorndal et al. 2003; Patrício et al. 2011), Aus-
tralia (Chaloupka and Limpus 2005) and Eastern Pacific 
(Seminoff et al. 2003; Eguchi et al. 2010). However, it is 
believed that variability among regions does exist, mak-
ing comparison among sites valuable in understanding 
the structure of the different aggregations (Balazs and 
Chaloupka 2004; Kubis et al. 2009; Bjorndal et al. 2013a, 
b).

The Fernando de Noronha Archipelago, off the north-
eastern coast of Brazil, is a foraging ground for green 

and also for hawksbill (Eretmochelys imbricata) turtles 
(Sanches and Bellini 1999). Genetic studies have shown 
that green turtles foraging at Fernando de Noronha are 
presumed to originate from Ascension Island, with addi-
tional probable contributions from the Greater Caribbean 
and West Africa (Bjorndal et al. 2006). The Archipelago 
also has a small green turtle nesting population (Bellini 
and Sanches 1996). A long-term capture-mark-recapture 
(CMR) study run by ProjetoTAMAR-ICMBio, the Brazil-
ian sea turtle conservation programme, has existed since 
1987 in Fernando de Noronha (Bellini and Sanches 1996). 
Using these long-term CMR data, we tested: (1) whether 
wide-scale recovery of this species in the Atlantic was 
reflected within the study population; (2) whether changes 
in population density affected the growth rates of indi-
viduals; and (3) whether CMR data could be used to con-
struct a growth function for individuals and estimate age at 
maturity.

Methods

Study area

Fernando de Noronha is an offshore volcanic archipelago 
located 345 km off the northeastern Brazilian coast (Fig. 1a). 
It consists of one main island and approximately 18 small 
islets, encompassing a total land area of 26 km2 (Garla et al. 
2006). Part of the site is included in a National Marine Park 
(created by federal decree in 1988), and in addition, a sec-
tor on the main island where around 4,000 people live is an 
environmentally protected area (created in 1986). In 2001, 
the archipelago was declared a UNESCO (United Nations 
Educational, Scientific and Cultural Organisation) World 
Heritage Site, due to its importance for tropical seabirds, 
cetaceans, sharks, fish and marine turtles (UNESCO 2014). 
For comparisons among sites within the archipelago, the 
study area was divided into three sites, namely Mar de Den-
tro, Ilhas Secundárias and Sueste (Fig. 1b).

Capture of turtles

Green turtles were hand-captured by snorkelling or scuba 
diving at depths between 0.5 and 30 m. Snorkelling was 
used at most sites around the main island, with each bout 
taking ca. 1 h. Surveys consisted of groups of one to five 
people either departing from a beach or using a small boat 
as a platform. Scuba dives had a maximum duration of 
50 min, as a function of dive depth, with an average time 
of 45 min. The surveyed sites were generally offshore and 
around the small adjacent islands that surround the archi-
pelago, by arrangement with commercial diving operators. 
Scuba divers operated in groups of two to five people.
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Temporal patterns of the CMR programme

The sampling of turtles has not been homogeneous over 
the years, either spatially or temporally. Between 1988 and 
1991, the survey locations were well distributed around the 
archipelago, but effort was generally lower than in subse-
quent years. From 1992, surveys were performed mainly 
at Baía do Sueste, although other places in the archipelago 
were also sampled. Between 1992 and 2011, there were sur-
veys in at least 10 months of each year, except in 2006 and 
2007, when surveys were performed for 7 and 6 months, 
respectively, while between 1988 and 1991 surveys covered 
from 4 to 9 months of each year. Between 2009 and 2012, 
surveys were performed 12 months per year.

Tagging and measurement

Turtles were tagged on both front flippers (Balazs 1999; 
Marcovaldi and Marcovaldi 1999) using monel tags until 
1994 and inconel tags since 1995 (National Band and 
Tag Co., USA, style 681). Curved carapace length was 
measured with a flexible plastic measuring tape (preci-
sion 0.1 cm) following the methodology described in 
Marcovaldi and Marcovaldi (1999) and performed by 
Projeto TAMAR technical team since 1988 as part of 
the research programme in the area. Researches were 
trained to check for tag scars, and individuals with scars 
signifying that both tags have been lost were found on 
8 of 1,279 (0.6 %) untagged individuals. Records of 
tag replacement or of only a single tag being attached 
accounted for 9.4 % of all recaptures. Thus, we consider 
a conservative estimate of 10 % tag loss estimation in 
this study.

Data analysis

Size distribution

The size distribution of turtles was based on size at first 
capture (n = 1,279), which means that each turtle contrib-
uted to the distribution only once. Captured turtles were 
mostly immature, lacking external sexual dimorphism, 
and sex was not determined. A few adult-sized turtles 
(i.e. CCL > 94 cm; n = 12) were caught during the study 
period, but these were not considered in the analyses. Size 
distribution of the turtles was tested for possible differ-
ences among sites using a Kruskal–Wallis test. The varia-
tion of the CCL distribution of the turtles across years was 
analysed using a loess regression (with local quadratic 
fitting), where each individual contributed only once per 
year (n = 2,455). The 95 % pointwise confidence inter-
vals for the regression curve were also computed using 
the loess method (Cleveland et al. 1993). All graphs were 
produced, and data analyses carried out using the software 
R 2.8.1 (R Core Team 2012). The significance level of the 
statistical tests was α = 0.05. All data were checked for 
normality using the Shapiro–Wilk test, and when normal-
ity was not met, nonparametric statistical analyses were 
undertaken.

Median time of residency and distance between captures

The estimated time of residency within the area was cal-
culated as the time interval in years between a turtle’s first 
and last capture. This is a conservative estimate, as a tur-
tle may have been present in our study site both before its 
first capture and after the last time it was caught, and not 

Fig. 1  Map of Brazil showing the location of Fernando de Noronha Archipelago (a) and map of the island showing the three main survey loca-
tions (Mar de Dentro, Ilhas Secundárias and Sueste) (b) (Source: programme Maptool at www.seaturtle.org)
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detected. The minimum swimming distance between the 
most widely dispersed locations, resulting in maximal dis-
placement, was estimated using Google Earth (Google Inc. 
2009).

Growth rates

Growth rates (in centimetres per year; cm year−1) 
were calculated for each turtle as: mean annual growth 
rate = (∆CCL/∆t) × 365, where ∆CCL was the CCL 
variation between captures and ∆t was the number of 
days elapsed since initial capture. Only recapture intervals 
greater than 10 months were included in the analysis (van 
Dam 1999; Rees et al. 2012).

GAM and age at maturity

We modelled somatic growth using a generalised additive 
model (GAM; Hastie and Tibshirani 1990). The GAMs 
were fitted using the package ‘mgcv’ (Wood 2001) in 
the software R 2.8.1 (R Core Team 2012). The response 
variable (absolute growth rate) was determined as a func-
tion of four potential growth covariates. Three covariates 
were continuous (median size, median sampling year and 
recapture interval) and one was categorical (site). The 
median size is the median CCL between the capture and 
subsequent recapture, the latter being the next chrono-
logical recapture of the individual, after a minimum of 
10 months, which could be recaptured on more than one 
occasion.

This midpoint is believed to be more representative 
of the turtles’ size during the time interval for which the 
growth rate was calculated than using the CCL at the first 
or last capture (Limpus and Chaloupka 1997; Casale et al. 
2009). The recapture interval was included in the analysis 
to account for any bias from variable durations of these 
intervals. The median sampling year was assigned as the 
midpoint between the year of capture and subsequent 
recapture. The expected size-specific growth rate function 
was extracted from the GAM model using cubic smooth 
splines and numerically integrated to estimate the time in 
years that a turtle would spend in Fernando de Noronha 
from recruitment—ca. 30 cm CCL—until reaching a maxi-
mum size of 87 cm CCL, which was the maximum size of 
a turtle in this population on its first capture. The expected 
size-specific growth rate function resulting from the loess 
regression was extracted and numerically integrated using 
the difference equation: y(CCLi) = y(CCLi−1) + (CCLi–
CCLi−1)/r(CCLi), where y stands for years at large since 
recruitment, CCLi is the curve carapace length for which 
the years at large are being estimated, CCLi−1 is the pre-
ceding CCL value and r is the growth rate from the loess 
regression.

Sampling design

The sampling design in this study was mixed longitudi-
nal sampling, with 50 % of individual green turtles being 
recaptured one or more times. As age is unknown, as in 
most sea turtle studies, this sampling design confounds 
cohort and year effects (Limpus and Chaloupka 1997; 
Bjorndal et al. 2000).

Survival

Individual capture history profiles were gathered over the 
12-year sampling period from 2001 to 2012. This time 
interval was more representative of an equally distributed 
capture effort throughout the period. The Cormack–Jolly–
Seber (CJS) model was used following Lebreton et al. 
(1992) and implemented in Program MARK v6.1 (White 
and Burham 1999). Goodness of fit (GoF) of the general 
time-dependent model was evaluated using the programme 
RELEASE. GoF tests were used to determine whether the 
model fitted the data and to evaluate the CJS assumptions 
(Lebreton et al. 1992). In particular, the TEST 2.C was used 
to verify the assumption of equal catchability and TEST 
3.SR to evaluate the effect of handling or of presumed tran-
sients on survival probabilities. Transients are considered 
individuals that are not residents in the sampling area but 
rather are in transit, so they are captured once and never 
seen again, having zero probability of recapture although 
they are still alive (Cormack 1993; Pradel et al. 1997). This 
represents an operational definition of transience, since 
it was not based on any assessment of local dispersion to 
identify true individual transients (Chaloupka and Limpus 
2001) and thus constitute an apparent transience.

The global CJS model {Phi(t)p(t)} fitted the data poorly 
(TEST 2 + TEST 3: X2 = 159.775, df = 49; p < 0.001). 
Failure of GoF TESTS 2 and 3 led us to use a time-since-
marking model structure to account for transient behaviour 
(Chaloupka and Limpus 2002), and a recently developed 
random effects CJS model approach to account for cap-
ture heterogeneity in survival and/or recapture probabili-
ties (Gimenez and Choquet 2010). There are no established 
procedures for assessing a random effects CJS model GoF 
(Gimenez and Choquet 2010). We used the median c-hat 
estimate (1.2) to adjust the model selection metric [Akai-
ke’s information criterion (AIC)] used for the random 
effects CJS model fits. The best-fit model chosen was the 
one with the lowest AIC value, which was used to esti-
mate apparent survival and recapture probabilities. Since 
the recovery of dead turtles was scarce (1.3 %; n = 16), 
we proceeded with the analysis using a live-captures-only 
model. This model generates estimates of apparent survival 
probability (Phi), which is the probability that a turtle has 
neither died nor emigrated from the study area, and the 
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recapture probability (p), which is the probability that a tur-
tle that is available for capture in the study population is 
caught (Bjorndal et al. 2003).

Abundance

The calculated recapture probabilities derived from the 
best-fit CJS model were then applied in a Horwitz–Thomp-
son (HT) type estimator: Ni = (ni/ρi) (Seber 1982) to esti-
mate annual abundance, where ni is the number of captured 
turtles in the ith year, Ni is the number of turtles in the area 
in the ith year and ρi is the recapture probability in the ith 
year. The approximate 95 % confidence intervals were cal-
culated as Ni ± 1.96 × SE(Ni), where SE(Ni) = conditional 
standard error (SE(Ni) = [(ni/ρi)

2 × (var (ρi)/(ρi)
2)]0.5), 

where var (ρi) is the estimated recapture probability vari-
ance in ith year (Loery et al. 1997; Chaloupka and Limpus 
2001). The underlying trend in the population abundance 
series was estimated using a generalised least squares 
(GLS) model with restricted maximum likelihood estima-
tion (REML) (Chaloupka and Limpus 2001). The GLS 
models were fitted using the package ‘nmle’ (Pinheiro et al. 
2006) in the software R 2.8.1 (R Core Team 2012). The 
model was variance weighted, with log link and first-order 
moving average error to account for temporal correlation, 
since there was a substantial overlap of individual turtles in 
successive years (Bjorndal et al. 2005).

Results

Captured turtles and size distribution

From 1988 through to February of 2013, 1,279 individual 
green turtles were captured in a total of 2,979 capture events. 
Of these, 640 turtles (50.0 %) were recaptured from between 
one (n = 276) to seventeen (n = 2) times. Curved carapace 
length at first capture ranged from 27 to 87 cm (mean ± SD 
47.9 ± 11.4 cm, median 45.5 cm, IQ range 39–55 cm, 
n = 1,279; Fig. 2). Only one turtle was found in Noronha 
bearing tags applied at another Projeto TAMAR station in 
Brazil. It was caught 11 years after being tagged 2.8 km 
away, in Ubatuba, southeast Brazil (23º40′S, 45º03′W). Its 
CCL was 39 cm at first capture and 69 cm at recapture.

Differences among sites

There was a significant difference in the size of the tur-
tles on their first capture across the three different sites 
within our study area (K = 103.39, df = 2, p < 0.001). A 
post hoc Kruskal–Wallis multiple comparisons test showed 
that median size at all sites was significantly different from 
each other. Turtles at Sueste were larger (52.5 cm) than 

those at Ilhas Secundárias (46.5 cm) and Mar de Dentro 
(43.4 cm). The size of captured turtles was, however, rela-
tively constant across years, when considering the overall 
mean (Supplemental Fig. 1).

Median time of residency and distance between captures

The interval between recaptures ranged from one day to 
11.2 years (n = 637; Supplemental Fig. 2a) with a median 
of 2.4 years (IQ range 1.2–4.2 year). The mean minimum 
swimming distance between captures was 1.0 ± 3.0 km 
(range 0–14.3 km, n = 637; Supplemental Fig. 2b), with 
84.1 % of the turtles recaptured <500 m from where they 
were originally captured.

Growth rates

Recapture intervals varied between 10 months and 
10.6 year, with a median of 1.2 year. We recorded 1,022 
growth increments from 542 individual turtles. Overall, 
the mean growth rate for juvenile green turtles in Fer-
nando de Noronha was 2.6 ± 1.6 cm year−1 (range −0.9 to 
−7.9 cm year−1). The growth rate function was, however, 
non-monotonic, with a peak in growth rates for the 50–
60 cm CCL size class (Supplemental Fig. 3 and Table 1). 
The GAM model of growth rates explained only 27.6 % of 
the variance, suggesting that there is significant variability 
in the growth data that is not attributable to the modelled 
covariates (median size, median sampling year, recapture 
interval and site). The model indicated that size, site and 
median sampling year had significant effects on somatic 
growth, while the recapture interval had no significant 
effect on growth rates (Fig. 3). The GAM results for each 
site are shown in Supplemental Fig. 4. From the numeri-
cal integration of the size-specific growth rate function, we 
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obtained empirical estimates of the expected time in years 
necessary for a typical green turtle in Fernando de Noronha 
to grow from ca. 30 cm to 87 cm CCL, which was ca. 
22 years (Fig. 4).

Survival

The dataset comprised 1,194 individual CMR profiles. 
Extensions to the CJS model, as the Burnham (1993) and 

the Barker (1997) models, integrate data from tag recover-
ies (i.e. from animals found dead) or from both tag returns 
and re-sight occasions, allowing estimations of true survival 
and emigration rates. However, dead recoveries of marked 
individuals are often too sparse to include in the models 
(Bjorndal et al. 2003). In our study site, we recovered only 
1.3 % of the tagged individuals (n = 16), and when a Burn-
ham model was run, it returned biased estimates of survival 
(~1.0). We therefore proceeded with the analysis using a 
live-captures-only model. This model generates estimates 
of apparent survival probability (Phi), which is the prob-
ability that a turtle has neither died nor emigrated from the 
study area, and the recapture probability (p), which is the 
probability that a turtle that is available for capture in the 
study population is caught (Bjorndal et al. 2003).

The best-fit model according to the AIC value comprised 
(1) time-dependent 2-age-class-specific (time-since-mark-
ing) survival and (2) time-dependent 2-age-class-specific 
(time-since-marking) recapture probabilities accounting for 
individual capture heterogeneity (Table 1). The estimated 
annual apparent survival probability derived from the best-
fit model (Table 1) for the previously marked or “resident” 
turtles was 0.85 (95 % CI 0.59–1). The mean annual recap-
ture probability was 0.29 (95 % CI 0.09–0.6).

Abundance estimates and trends

The recapture probabilities were used to estimate the 
annual green turtle population in the study area over the 

Fig. 3  Graphical summary of 
GAM model fits for growth 
rates (n = 1,022). Covariates are 
shown on the x-axis: a median 
curved carapace length, b recap-
ture interval in years, c median 
sampling year and d site. The 
response variable (growth rate 
in cm year−1) is shown on the 
y-axis in each panel as a centred 
smoothed function scale to 
ensure a valid pointwise 95 % 
confidence interval (ILH Ilhas 
Secundárias, MDD Mar de 
Dentro, SWT Sueste)
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Fig. 4  Numerical integration of the expected size-specific growth 
function for immature green turtles at Fernando de Noronha, shown 
in Fig. 5, to derive the expected size-at-age function, where age is in 
years at large since recruitment, as the age of recruits is unknown. 
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sampling period. The Horvitz–Thompson estimates of 
abundance (Ni) ranged from 420 to 1,148 individuals per 
year (Supplemental Table 2). The GLS model detected no 
significant trend in the abundance throughout the 12-year 
period although confidence around estimates was quite 
large. There was no correlation between the estimated 
mean annual abundance and the time-specific growth rates 
(Spearman’s correlation rho = 0.187, p > 0.05). The mean 
annual abundance, along with the 95 % confidence limits, 
and respective time-specific growth rate function derived 
from the GAM model are plotted together in Fig. 5.

Discussion

This study provides valuable information regarding the 
biology of green turtles in the southwest Atlantic and high-
lights the importance of maintaining long-term monitoring 
studies to better understand the dynamics of populations in 

different foraging areas. Major insights obtained are five-
fold: (1) size at recruitment, (2) patterns of residency, (3) 
growth rates and years at large spent in the study area, (4) 
temporal trends in abundance and (5) survival. The link-
ages between the latter three aspects are of particular con-
servation concern and broadly discussed.

Green turtles in Fernando de Noronha recruit to the 
neritic habitat at a similar size to that reported for other 
populations in the Caribbean (Bjorndal 1997; Bjorndal 
et al. 2005; Patrício et al. 2011). The continued capture 
of small and unmarked juveniles, coupled with the con-
stant size distribution of the captured turtles throughout 
the years, indicates that new turtles are constantly being 
recruited to the area. The median time interval between the 
first and last captures of ca. 2.4 years indicates that Fer-
nando de Noronha is a long-term developmental area for 
some green turtles, with some individuals remaining for 
up to 11.2 year. The turtles exhibited site fidelity to a cer-
tain extent, with 84 % of those recaptured, re-encountered 
<500 m from initial capture.

Research has shown a tendency towards a slowing 
of growth as maturity approaches (Green 1993), when 
resource allocation shifts from somatic investment to repro-
ductive outputs (Bjorndal et al. 2013a, b). The growth rate 
function varies among species and populations, and for 
green turtles in the Caribbean, the growth rates decrease 
with increasing size (Bjorndal and Bolten 1988; Boulon 
and Frazer 1990; Collazo et al. 1992; Patrício et al. 2014), 
as also described for other marine turtle species such as 
Western Atlantic loggerheads (Scott et al. 2012; Bjorndal 
et al. 2013a, b). The non-monotonic pattern exhibited in 
Fernando de Noronha, with a peak in growth rates (around 
50–60 cm CCL) followed by a decrease, has mainly been 
reported for conspecific green turtle populations in the 
Pacific (Limpus and Chaloupka 1997; Seminoff et al. 
2002; Balazs and Chaloupka 2004; Chaloupka et al. 2004). 
In the Atlantic, Kubis et al. (2009) described this pattern 
for the first time on a green turtle population in Florida. 
Green turtles in Fernando de Noronha also showed slower 

Table 1  Summary of the Cormack–Jolly–Seber models built in Mark v6.1 for the Fernando de Noronha capture-mark-recapture data set from 
2001 to 2012

tsm time-since-marking (2 age-classes), t time, Phi survival, p recapture)

Model QAICc Delta QAICc QAICc weight Model likelihood Number of parameters Deviance

1. {Phi (tsm) p (tsm)} random effects} 3,864.42 0 1 1 35 476.36

2. {Phi(tsm) p(tsm)} 3,924.01 59.58 0 0 38 529.73

3. {Phi(t) p(t)} 3,962.89 98.46 0 0 22 601.57

4. {Phi(.) p(t)} 3,981.17 116.75 0 0 12 640.19

5. {Phi(tsm) p(t)} 4,056.04 191.62 0 0 20 698.81

6. {Phi(t) p(.)} 4,080.11 215.69 0 0 11 741.16

7. {Phi(.) p(.)} 4,156.64 292.21 0 0 2 835.80
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Fig. 5  Annual estimates of abundance (Ni) and expected size-spe-
cific growth rate function of juvenile green turtles in Fernando de 
Noronha, Brazil. Black dots represent mean annual abundance esti-
mates derived from the Horwitz–Thompson estimator presented 
with the 95 % confidence intervals. Grey dots represent the expected 
size-specific growth rate function according to median sampling year 
derived from the GAM model
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growth than most other Atlantic populations in the Carib-
bean (Boulon and Frazer 1990; Bjorndal et al. 2000; Patrí-
cio et al. 2014), being closer to rates described in the North 
Atlantic (Bresette and Gorham 2001; Kubis et al. 2009; 
Goshe et al. 2010). It is likely that variability in growth 
rates will be driven at least in part by the quality and abun-
dance of the diet. Juvenile green turtles at most aggrega-
tions on the northeast and southeast Brazilian coast have a 
diet dominated by macroalgae (Ferreira 1968; Mendonça 
2009; Guebert-Bartholo et al. 2011), while in the Carib-
bean they are known for feeding on pastures of the seagrass 
Thalassia testudinum (Mortimer 1982; Bjorndal 1997).

The spatial variability observed within our study site 
indicates that on a small scale, growth rates are likely to 
vary depending on where the turtles are and how much 
fidelity to a particular site they show. The within-site vari-
ability in foraging-site growth rates is likely to be a con-
sequence of habitat quality and resource availability (Bal-
azs and Chaloupka 2004; Kubis et al. 2009). The higher 
growth rates observed at Sueste could also be related to 
the ecological characteristics of this bay. Shallow and shel-
tered waters, protected from wave action, could provide a 
warmer microhabitat selected by turtles (Schofield et al. 
2009; Fossette et al. 2012). Additionally, sheltered waters 
are a lower energy environment that could be energetically 
beneficial for turtles, since they do not have to battle cur-
rents or dive deeply for access to benthic resources, such 
as what happens in the Mar de Fora, an open ocean site. 
This could possibly explain the significant size difference 
among subregions. It is important to highlight that the 
covariates used in this study may not be the only factors 
influencing growth rates, and other aspects, which were not 
considered due to lack of data, such as sex and rookery of 
origin, might also play an important role in somatic growth.

Slow growth rates could be associated with high mean 
annual abundance, suggesting density-dependent effects 
may be occurring. However, the abundance confidence 
intervals were relatively large and no trends were detected 
during the study period. The recovery of several green tur-
tle nesting populations, including the major source rook-
ery for this foraging aggregation (Ascension Island), has 
been reported as a result of conservation efforts from the 
1940s on Ascension and since the 1980s in Brazil (Brod-
erick et al. 2006; Chaloupka et al. 2008; Weber et al. in 
press). This suggests recovery on the feeding grounds 
would have happened many years before. Significant year 
effects on growth rates, as observed in this study, have also 
been related to density-dependence effects (Bjorndal et al. 
2000). Observed growth rates have generally been declin-
ing since we started monitoring in the early 1990s (Sup-
plemental Fig. 5). Data for abundance, however, are more 
temporally constrained, and further studies to investigate 
the carrying capacity, measures of productivity, algae and 

seagrass abundance and growth in the study area would be 
valuable to explore this possibility.

Given that it might take ca. 3–5 years until green tur-
tles recruit to neritic habitats (Bjorndal et al. 2005; Reich 
et al. 2007 Goshe et al. 2010), it would take approximately 
25 years for a green turtle in Fernando de Noronha to reach 
a size of 87 cm CCL, and even longer to reach sexual matu-
rity (considering 97 cm CCL, the minimum size for a nest-
ing female on Ascension Island (Weber et al. in press). It 
is reasonable, however, that it would take at least three 
decades to reach maturity if they remain in the Archipel-
ago or if growth rates are similar at other Brazilian forag-
ing areas. The delayed maturity on green turtles has been 
previously described, and it has been suggested that they 
may take 25 years or more to reach sexual maturity (Bjorn-
dal et al. 2000; Goshe et al. 2010). However, recent studies 
have suggested shorter time intervals for Caribbean green 
turtles, such as 15–19 years described by Bell et al. (2005), 
for turtles with live tags from the Cayman Turtle Farm, 
and 14–22 years estimated for turtles resident in Culebra 
Island, Puerto Rico (Patrício et al. 2014). In the Pacific, age 
at maturity was estimated as being as long as 35–40 years 
in Hawaii (Balazs and Chaloupka 2004), 50 years in the 
southern Great Barrier Reef (Chaloupka et al. 2004) and up 
to 92 years in the Galápagos Islands (Green 1993).

Estimated apparent survival for juveniles in Fernando 
de Noronha was in the upper range of those reported for 
green turtles on studies conducted in the Caribbean (Bjorn-
dal et al. 2003; Patrício et al. 2011) and in the Pacific 
(Chaloupka and Limpus 2005; Table 2). Survival probabili-
ties can vary among populations and life stages in response 
to different environmental conditions and causes of mortal-
ity (Bjorndal et al. 2003). Fernando de Noronha is an envi-
ronmentally protected area, with fishing restrictions and no 
direct take of sea turtles. The relatively low level of anthro-
pogenic threats is in accordance with the high apparent sur-
vival. During the study period, only 24 green turtles were 
found with evidence of fishery interactions or boat col-
lisions, only six of them were dead. The incorporation of 
data from dead recoveries would improve the CJS models 
capacity to allow the estimation of the true survival (S) and 
emigration rates. However, dead recoveries were too scarce 
to be included in this study.

The relatively high proportion of transients, which must 
be considered when analysing mark-and-recapture data 
(Pradel et al. 1997; Sasso et al. 2006), was 50 % in our 
study, indicating that Fernando de Noronha is possibly an 
interim foraging area for turtles that are en route to other 
feeding grounds. Stopover areas, where turtles recruit to 
after a pelagic phase, spending some time recovering from 
the previous oceanic phase and storing resources before 
travelling to other developmental habitats, have also been 
seen in the Eastern Pacific (Amorocho et al. 2012). In 
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Fernando de Noronha, apart from one individual that was 
recaptured at Atol das Rocas, another important feeding 
ground located nearby (and after that recaptured in Fer-
nando de Noronha again), the destination of those tran-
sients is currently not known, however, is likely to be in 
neritic waters of Brazil, where large numbers of adults are 
known to reside (Hays et al. 2002). Considering other Bra-
zilian feeding grounds, in northeast Brazil, juvenile green 
turtles are believed to exhibit different behaviour patterns, 
from residency with a high level of site fidelity, to extended 
home ranges (Godley et al. 2003). In Ubatuba, however, it 
is suggested that turtles would have a low residency time 
and a high number of individuals are never seen again after 
the initial tagging (Gallo et al. 2006). A similar pattern of 
low residency time was also found on an aggregation of 
juvenile green turtles inside the effluent discharge chan-
nel of a steel plant located in the coast of Espírito Santo 
State, eastern Brazil (Torezani et al. 2010). The ecological 
attributes that would make Fernando de Noronha a feeding 
ground with high incidence of transients are unknown, but 
could be related to its location, as it is an off shore island 
that could be reached by individuals through the Equato-
rial Current from Ascension Island or Africa. Also, the 
relatively slow growth rates observed could indicate a sub-
optimal habitat, where some of the turtles would not settle 
for long periods.

The importance of monitoring juvenile life stages has 
been recognised (Bjorndal and Bolten 2000; Bjorndal et al. 
2005) and studies such the one presented here help to fill 
a key knowledge gap (Hamann et al. 2010). By monitor-
ing juveniles, changes in population abundance and trends 
can be detected earlier, leading to more effective conser-
vation measures (Bjorndal et al. 2005). The temporal and 
spatial variability in growth rates demonstrates the com-
plexity of sea turtle population dynamics. Supplementary 

investigation of the ecological conditions of this habitat is 
needed to understand the observed patterns. More research 
into the movements of turtles from this aggregation and 
genetic studies developed with larger sample sizes would 
help to clarify the connectivity among South Atlantic feed-
ing grounds and between this aggregation and the major 
green turtle rookeries.
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